示例#1
0
  def get_images_dataset_categories_counts_by_category(source, category=None):
    image_api = Images()
    res = GetImagesCategoriesCountsByCategoryResponse()

    try:
      res_data = GetImagesCategoriesCountsByCategoryResponseData()

      total_count = image_api.get_images_count_by_category_name(category_name=category)
      valid_count = image_api.get_images_count_by_category_name(category_name=category, valid=True)
      invalid_count = image_api.get_images_count_by_category_name(category_name=category, valid=False)

      res_data.total_count = total_count
      res_data.valid_count = valid_count
      res_data.invalid_count = invalid_count

      res.message = "Successful"
      res.data = res_data
      response_status = 200

    except Exception as e:
      log.error(str(e))
      res.message = str(e)
      response_status = 400

    return res, response_status
示例#2
0
    def get_playground_images_by_category(source,
                                          category=None,
                                          offset=0,
                                          limit=100):
        image_api = Images()
        res = GetImagesByCategoryResponse()

        try:
            res_data = GetImagesByCategoryResponseData()

            count = image_api.get_images_count_by_category_name(
                category_name=category)

            images = image_api.get_images_by_category_name(
                category_name=category, offset=offset, limit=limit)

            res_data.total_count = count
            imgs = []
            for i in images:
                i['id'] = i.get('_id')
                imgs.append(ImageDataset().from_dict(i))

            res_data.images = imgs
            res.message = "Successful"
            res.data = res_data
            response_status = 200

        except Exception as e:
            log.error(str(e))
            res.message = str(e)
            response_status = 400

        return res, response_status
示例#3
0
def main(_):
    dataset_api = Images()
    writer = tf.python_io.TFRecordWriter(FLAGS.output_path)

    offset = 0
    limit = 50

    while True:
        try:
            res = dataset_api.get_images_by_source("deepfashion",
                                                   offset=offset,
                                                   limit=limit)

            for image in res:
                print(image)
                exit(1)
                tf_data = dict_to_tf_example(image)
                writer.write(tf_data.SerializeToString())

            if limit > len(res):
                print("done")
                break
            else:
                offset = offset + len(res)
        except Exception as e:
            print(str(e))

    writer.close()
示例#4
0
    def update_images_dataset_by_ids(source, ids, valid=True):
        image_api = Images()
        res = UpdateImageDatasetResponse()

        try:
            image_api.validate_images(ids, valid)
            res.message = "Successful"
            response_status = 200

        except Exception as e:
            log.error(str(e))
            res.message = str(e)
            response_status = 400

        return res, response_status
def main(_):
  dataset_api = Images()
  train_writer = tf.python_io.TFRecordWriter(FLAGS.train_output_path)
  eval_writer = tf.python_io.TFRecordWriter(FLAGS.eval_output_path)

  train_images = []
  eval_images = []

  for i in range(1, 4):
    category_class = str(i)

    (category_train_images, category_eval_images) = read_from_db(dataset_api,
                                                                 category_class)
    train_images.extend(category_train_images)
    eval_images.extend(category_eval_images)
    print("category_class: {} read from db done!".format(category_class))

  random.shuffle(train_images)
  random.shuffle(eval_images)

  for image in train_images:
    tf_data = dict_to_tf_example(image)
    train_writer.write(tf_data.SerializeToString())

  for image in eval_images:
    tf_data = dict_to_tf_example(image)
    eval_writer.write(tf_data.SerializeToString())

  print("make train/eval TFRecord done!")
  train_writer.close()
  eval_writer.close()
def main(_):
    dataset_api = Images()
    train_writer = tf.python_io.TFRecordWriter(FLAGS.train_output_path)
    eval_writer = tf.python_io.TFRecordWriter(FLAGS.eval_output_path)

    train_images = []
    eval_images = []

    category_class = str(FLAGS.category_class)
    (train_images, eval_images) = read_from_db(dataset_api, category_class)
    print("category_class: {} read from db done!".format(category_class))

    random.shuffle(train_images)
    random.shuffle(eval_images)

    print("----images_num-------")
    print(len(train_images))
    print(len(eval_images))
    print("---------------------")
    for image in train_images:
        if 'is_valid' in image:
            if image['is_valid']:
                tf_data = dict_to_tf_example(image)
                train_writer.write(tf_data.SerializeToString())

    for image in eval_images:
        if 'is_valid' in image:
            if image['is_valid']:
                tf_data = dict_to_tf_example(image)
                eval_writer.write(tf_data.SerializeToString())

    print("make train/eval TFRecord done!")
    train_writer.close()
    eval_writer.close()
  print("id = " + str(id))
  print("img_file = " + file)
  key = os.path.join('deepfashion', 'img', 'with_box', id + '.jpg')
  is_public = True
  file_url = storage.upload_file_to_bucket(AWS_BUCKET, file, key, is_public=is_public)
  return file_url

def load_image_into_numpy_array(image):
  (im_width, im_height) = image.size
  return np.array(image.getdata()).reshape(
    (im_height, im_width, 3)).astype(np.uint8)


if __name__ == '__main__':
  print('start')
  image_api = Images()
  offset = 0
  limit = 100

  while True:
    images = None
    try:
      images = image_api.get_images_by_source("deepfashion", offset, limit)
    except Exception as e:
      print(str(e))

    if len(images) == 0:
      break
    else:
      offset = offset + limit
示例#8
0
from __future__ import print_function
from stylelens_dataset.images import Images
from pprint import pprint
# create an instance of the API class
api_instance = Images()

try:
    ids = []

    ids.append('5a718ce0bd44107fbae98994')

    res = api_instance.validate_images(ids, valid=True)
    pprint(res)
except Exception as e:
    print("Exception when calling validate_images: %s\n" % e)
示例#9
0
from __future__ import print_function
from stylelens_dataset.images import Images
from pprint import pprint
# create an instance of the API class
api_instance = Images()

try:
    offset = 0
    limit = 100

    while True:
        res = api_instance.get_images_by_category_class("1",
                                                        offset=offset,
                                                        limit=limit)

        pprint(res)
        if limit > len(res):
            break
        else:
            offset = offset + limit

except Exception as e:
    print("Exception when calling get_images_by_source: %s\n" % e)
示例#10
0
from __future__ import print_function
from stylelens_dataset.images import Images
from pprint import pprint
# create an instance of the API class
api_instance = Images()

image = {}
image['file'] = "xxxkkkx"
image['source'] = 'deepfashion'

size = {}
size['width'] = 300
size['height'] = 500
size['depth'] = 3

objects = []
object = {}
box = {}
box['x1'] = 10.0
box['y1'] = 10.0
box['x2'] = 40.0
box['y2'] = 60.0
object['name'] = 'xxx'
object['box'] = box
objects.append(object)

image['size'] = size
image['objects'] = objects

try:
    api_response = api_instance.add_image(image)
from __future__ import print_function
from stylelens_dataset.images import Images
from pprint import pprint
# create an instance of the API class
api_instance = Images()

try:
    offset = 0
    limit = 10

    res = api_instance.get_images_by_category_name("Blouse",
                                                   offset=offset,
                                                   limit=limit)
    pprint(res)
except Exception as e:
    print("Exception when calling get_images_by_category_name: %s\n" % e)
示例#12
0
from __future__ import print_function
from stylelens_dataset.images import Images
from pprint import pprint
# create an instance of the API class
api_instance = Images()

try:
    api_response = api_instance.get_images_by_source("deepfashion")
    pprint(api_response)
except Exception as e:
    print("Exception when calling get_images_by_source: %s\n" % e)
示例#13
0
        im = Image.open(f)
        area = (left, top, left + abs(left - right), top + abs(bottom - top))
        cropped = im.crop(area)
        cropped.save(new_file_name)
        uploaded_path = upload_image_to_storage(new_file_name)
        os.remove(new_file_name)
    except Exception as e:
        print(e)

    return uploaded_path


if __name__ == '__main__':
    print('start')

    image_api = Images()
    object_api = Objects()

    offset = 0
    limit = 100

    while True:
        try:
            res = image_api.get_images_by_source(source='deepfashion',
                                                 offset=offset,
                                                 limit=limit)

            for image in res:
                cropped_file = crop(image)
                image['url'] = cropped_file
                image['image_id'] = str(image['_id'])
示例#14
0
    file_url = storage.upload_file_to_bucket(AWS_BUCKET,
                                             file,
                                             key,
                                             is_public=is_public)
    return file_url


def get_image_size(img_file):
    with Image.open(img_file) as img:
        return img.size


if __name__ == '__main__':
    print('start')

    dataset_api = Images()
    bboxes = get_bbox()

    category_clothes = get_category_clothes()
    category_images = get_category_images(category_clothes)

    attribute_clothes = get_attribute_clothes()
    attribute_images = get_attribute_images(attribute_clothes)

    i = 0
    for img in attribute_images:
        image = {}
        image['file'] = img['file']
        image['source'] = 'deepfashion'
        width, height = get_image_size(img['file'])
        image['width'] = width
from __future__ import print_function
from stylelens_dataset.images import Images
from pprint import pprint
# create an instance of the API class
api_instance = Images()

try:
    res = api_instance.get_images_count_by_category_name("Blouse")
    pprint(res)
except Exception as e:
    print("Exception when calling get_images_by_category_name: %s\n" % e)