def __init__(self, batchnorm_pool = False, **kwargs): super(NegConvBNRelu, self).__init__(**kwargs) self.conv1 = nn.Conv2D(channels=64, kernel_size=(3, 3), strides=(1,1), use_bias=False) self.bn = nn.BatchNorm() self.act = nn.Activation('relu') self.pool = nn.AvgPool2D(pool_size=(4,4)) self.tailneg = TailNegBlock() self.batchnorm_pool = batchnorm_pool
def __init__(self, **kwargs): super(NegConvAdd, self).__init__(**kwargs) self.conv1 = nn.Conv2D(channels=64, kernel_size=(3, 3), strides=(1,1), use_bias=False) self.act = nn.Activation('relu') self.pool = nn.AvgPool2D(pool_size=(4,4)) self.tailneg = TailNegBlock() self.add_value = mx.gluon.Parameter('add_value', init=mx.init.Xavier(magnitude=2.24), dtype='float32', allow_deferred_init=True)
def __init__(self, **kwargs): super(NegConvBN, self).__init__(**kwargs) self.conv1 = nn.Conv2D(channels=64, kernel_size=(3, 3), strides=(1, 1), use_bias=False) self.bn1 = nn.BatchNorm() self.pool = nn.AvgPool2D(pool_size=(4, 4)) self.tailneg = TailNegBlock()
def __init__(self, use_bias, flatten, **kwargs): super(NegFCReLU, self).__init__(**kwargs) self.fc = nn.Dense(units=64, use_bias=use_bias, flatten=flatten) self.act1 = nn.Activation('relu') self.act2 = nn.Activation('sigmoid') self.tail_neg = TailNegBlock()