def evaluate_ppl(model, dev_data, batch_size=32): """ Evaluate perplexity on dev sentences @param model (NMT): NMT Model @param dev_data (list of (src_sent, tgt_sent)): list of tuples containing source and target sentence @param batch_size (batch size) @returns ppl (perplixty on dev sentences) """ was_training = model.training model.eval() cum_loss = 0. cum_tgt_words = 0. # no_grad() signals backend to throw away all gradients with torch.no_grad(): for src_sents, tgt_sents in batch_iter(dev_data, batch_size): loss = -model(src_sents, tgt_sents).sum() cum_loss += loss.item() tgt_word_num_to_predict = sum(len(s[1:]) for s in tgt_sents) # omitting leading `<s>` cum_tgt_words += tgt_word_num_to_predict ppl = np.exp(cum_loss / cum_tgt_words) if was_training: model.train() return ppl
def setUp(self): # Seed the Random Number Generators seed = 1234 torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed * 13 // 7) # Load training data & vocabulary train_data_src = submission.read_corpus( './sanity_check_en_es_data/train_sanity_check.es', 'src') train_data_tgt = submission.read_corpus( './sanity_check_en_es_data/train_sanity_check.en', 'tgt') train_data = list(zip(train_data_src, train_data_tgt)) for src_sents, tgt_sents in submission.batch_iter( train_data, batch_size=BATCH_SIZE, shuffle=True): self.src_sents = src_sents self.tgt_sents = tgt_sents break self.vocab = Vocab.load( './sanity_check_en_es_data/vocab_sanity_check.json') # Create NMT Model self.model = submission.NMT(embed_size=EMBED_SIZE, hidden_size=HIDDEN_SIZE, dropout_rate=DROPOUT_RATE, vocab=self.vocab)
def test_0(self): """1d-0-basic: Sanity check for Encode. Compares student output to that of model with dummy data.""" # Seed the Random Number Generators seed = 1234 torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed * 13 // 7) # Load training data & vocabulary train_data_src = submission.read_corpus( './sanity_check_en_es_data/train_sanity_check.es', 'src') train_data_tgt = submission.read_corpus( './sanity_check_en_es_data/train_sanity_check.en', 'tgt') train_data = list(zip(train_data_src, train_data_tgt)) for src_sents, tgt_sents in submission.batch_iter( train_data, batch_size=BATCH_SIZE, shuffle=True): src_sents = src_sents tgt_sents = tgt_sents break vocab = Vocab.load('./sanity_check_en_es_data/vocab_sanity_check.json') # Create NMT Model model = submission.NMT(embed_size=EMBED_SIZE, hidden_size=HIDDEN_SIZE, dropout_rate=DROPOUT_RATE, vocab=vocab) # Configure for Testing reinitialize_layers(model) source_lengths = [len(s) for s in src_sents] source_padded = model.vocab.src.to_input_tensor(src_sents, device=model.device) # Load Outputs enc_hiddens_target = torch.load( './sanity_check_en_es_data/enc_hiddens.pkl') dec_init_state_target = torch.load( './sanity_check_en_es_data/dec_init_state.pkl') # Test with torch.no_grad(): enc_hiddens_pred, dec_init_state_pred = model.encode( source_padded, source_lengths) self.assertTrue( np.allclose(enc_hiddens_target.numpy(), enc_hiddens_pred.numpy()) ), "enc_hiddens is incorrect: it should be:\n {} but is:\n{}".format( enc_hiddens_target, enc_hiddens_pred) print("enc_hiddens Sanity Checks Passed!") self.assertTrue( np.allclose(dec_init_state_target[0].numpy(), dec_init_state_pred[0].numpy()) ), "dec_init_state[0] is incorrect: it should be:\n {} but is:\n{}".format( dec_init_state_target[0], dec_init_state_pred[0]) print("dec_init_state[0] Sanity Checks Passed!") self.assertTrue( np.allclose(dec_init_state_target[1].numpy(), dec_init_state_pred[1].numpy()) ), "dec_init_state[1] is incorrect: it should be:\n {} but is:\n{}".format( dec_init_state_target[1], dec_init_state_pred[1]) print("dec_init_state[1] Sanity Checks Passed!")
def setup(): # Load training data & vocabulary train_data_src = submission.read_corpus( './sanity_check_en_es_data/train_sanity_check.es', 'src') train_data_tgt = submission.read_corpus( './sanity_check_en_es_data/train_sanity_check.en', 'tgt') train_data = list(zip(train_data_src, train_data_tgt)) for src_sents, tgt_sents in submission.batch_iter( train_data, batch_size=LARGE_BATCH_SIZE, shuffle=True): src_sents = src_sents tgt_sents = tgt_sents break vocab = Vocab.load('./sanity_check_en_es_data/vocab_sanity_check.json') return src_sents, tgt_sents, vocab
def train(args: Dict): """ Train the NMT Model. @param args (Dict): args from cmd line """ train_data_src = read_corpus(args['--train-src'], source='src') train_data_tgt = read_corpus(args['--train-tgt'], source='tgt') dev_data_src = read_corpus(args['--dev-src'], source='src') dev_data_tgt = read_corpus(args['--dev-tgt'], source='tgt') train_data = list(zip(train_data_src, train_data_tgt)) dev_data = list(zip(dev_data_src, dev_data_tgt)) train_batch_size = int(args['--batch-size']) clip_grad = float(args['--clip-grad']) valid_niter = int(args['--valid-niter']) log_every = int(args['--log-every']) model_save_path = args['--save-to'] vocab = Vocab.load(args['--vocab']) model = NMT(embed_size=int(args['--embed-size']), hidden_size=int(args['--hidden-size']), dropout_rate=float(args['--dropout']), vocab=vocab, no_char_decoder=args['--no-char-decoder']) model.train() uniform_init = float(args['--uniform-init']) if np.abs(uniform_init) > 0.: print('uniformly initialize parameters [-%f, +%f]' % (uniform_init, uniform_init), file=sys.stderr) for p in model.parameters(): p.data.uniform_(-uniform_init, uniform_init) vocab_mask = torch.ones(len(vocab.tgt)) vocab_mask[vocab.tgt['<pad>']] = 0 device = torch.device("cuda:0" if args['--cuda'] else "cpu") print('use device: %s' % device, file=sys.stderr) model = model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=float(args['--lr'])) num_trial = 0 train_iter = patience = cum_loss = report_loss = cum_tgt_words = report_tgt_words = 0 cum_examples = report_examples = epoch = valid_num = 0 hist_valid_scores = [] train_time = begin_time = time.time() print('begin Maximum Likelihood training') while True: epoch += 1 for src_sents, tgt_sents in batch_iter(train_data, batch_size=train_batch_size, shuffle=True): train_iter += 1 optimizer.zero_grad() batch_size = len(src_sents) example_losses = -model(src_sents, tgt_sents) # (batch_size,) batch_loss = example_losses.sum() loss = batch_loss / batch_size loss.backward() # clip gradient grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), clip_grad) optimizer.step() batch_losses_val = batch_loss.item() report_loss += batch_losses_val cum_loss += batch_losses_val tgt_words_num_to_predict = sum(len(s[1:]) for s in tgt_sents) # omitting leading `<s>` report_tgt_words += tgt_words_num_to_predict cum_tgt_words += tgt_words_num_to_predict report_examples += batch_size cum_examples += batch_size if train_iter % log_every == 0: print('epoch %d, iter %d, avg. loss %.2f, avg. ppl %.2f ' \ 'cum. examples %d, speed %.2f words/sec, time elapsed %.2f sec' % (epoch, train_iter, report_loss / report_examples, math.exp( report_loss / report_tgt_words), cum_examples, report_tgt_words / ( time.time() - train_time), time.time() - begin_time), file=sys.stderr) train_time = time.time() report_loss = report_tgt_words = report_examples = 0. # perform validation if train_iter % valid_niter == 0: print('epoch %d, iter %d, cum. loss %.2f, cum. ppl %.2f cum. examples %d' % (epoch, train_iter, cum_loss / cum_examples, np.exp( cum_loss / cum_tgt_words), cum_examples), file=sys.stderr) cum_loss = cum_examples = cum_tgt_words = 0. valid_num += 1 print('begin validation ...', file=sys.stderr) # compute dev. ppl and bleu dev_ppl = evaluate_ppl(model, dev_data, batch_size=128) # dev batch size can be a bit larger valid_metric = -dev_ppl print('validation: iter %d, dev. ppl %f' % (train_iter, dev_ppl), file=sys.stderr) is_better = len(hist_valid_scores) == 0 or valid_metric > max(hist_valid_scores) hist_valid_scores.append(valid_metric) if is_better: patience = 0 print('save currently the best model to [%s]' % model_save_path, file=sys.stderr) model.save(model_save_path) # also save the optimizers' state torch.save(optimizer.state_dict(), model_save_path + '.optim') elif patience < int(args['--patience']): patience += 1 print('hit patience %d' % patience, file=sys.stderr) if patience == int(args['--patience']): num_trial += 1 print('hit #%d trial' % num_trial, file=sys.stderr) if num_trial == int(args['--max-num-trial']): print('early stop!', file=sys.stderr) exit(0) # decay lr, and restore from previously best checkpoint lr = optimizer.param_groups[0]['lr'] * float(args['--lr-decay']) print('load previously best model and decay learning rate to %f' % lr, file=sys.stderr) # load model params = torch.load(model_save_path, map_location=lambda storage, loc: storage) model.load_state_dict(params['state_dict']) model = model.to(device) print('restore parameters of the optimizers', file=sys.stderr) optimizer.load_state_dict(torch.load(model_save_path + '.optim')) # set new lr for param_group in optimizer.param_groups: param_group['lr'] = lr # reset patience patience = 0 if epoch == int(args['--max-epoch']): print('reached maximum number of epochs!', file=sys.stderr) exit(0)
def test_0(self): """1f-0-basic: Sanity check for Step. Compares student output to that of model with dummy data.""" # Seed the Random Number Generators seed = 1234 torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed * 13 // 7) # Load training data & vocabulary train_data_src = submission.read_corpus( './sanity_check_en_es_data/train_sanity_check.es', 'src') train_data_tgt = submission.read_corpus( './sanity_check_en_es_data/train_sanity_check.en', 'tgt') train_data = list(zip(train_data_src, train_data_tgt)) for src_sents, tgt_sents in submission.batch_iter( train_data, batch_size=BATCH_SIZE, shuffle=True): self.src_sents = src_sents self.tgt_sents = tgt_sents break self.vocab = Vocab.load( './sanity_check_en_es_data/vocab_sanity_check.json') # Create NMT Model self.model = submission.NMT(embed_size=EMBED_SIZE, hidden_size=HIDDEN_SIZE, dropout_rate=DROPOUT_RATE, vocab=self.vocab) reinitialize_layers(self.model) # Inputs Ybar_t = torch.load('./sanity_check_en_es_data/Ybar_t.pkl') dec_init_state = torch.load( './sanity_check_en_es_data/dec_init_state.pkl') enc_hiddens = torch.load('./sanity_check_en_es_data/enc_hiddens.pkl') enc_masks = torch.load('./sanity_check_en_es_data/enc_masks.pkl') enc_hiddens_proj = torch.load( './sanity_check_en_es_data/enc_hiddens_proj.pkl') # Output dec_state_target = torch.load( './sanity_check_en_es_data/dec_state.pkl') o_t_target = torch.load('./sanity_check_en_es_data/o_t.pkl') e_t_target = torch.load('./sanity_check_en_es_data/e_t.pkl') # Run Tests with torch.no_grad(): dec_state_pred, o_t_pred, e_t_pred = self.model.step( Ybar_t, dec_init_state, enc_hiddens, enc_hiddens_proj, enc_masks) self.assertTrue( np.allclose(dec_state_target[0].numpy(), dec_state_pred[0].numpy()), "decoder_state[0] should be:\n {} but is:\n{}".format( dec_state_target[0], dec_state_pred[0])) print("dec_state[0] Sanity Checks Passed!") self.assertTrue( np.allclose(dec_state_target[1].numpy(), dec_state_pred[1].numpy()), "decoder_state[1] should be:\n {} but is:\n{}".format( dec_state_target[1], dec_state_pred[1])) print("dec_state[1] Sanity Checks Passed!") self.assertTrue( np.allclose(o_t_target.numpy(), o_t_pred.numpy()), "combined_output should be:\n {} but is:\n{}".format( o_t_target, o_t_pred)) print("combined_output Sanity Checks Passed!") self.assertTrue( np.allclose(e_t_target.numpy(), e_t_pred.numpy()), "e_t should be:\n {} but is:\n{}".format(e_t_target, e_t_pred))