示例#1
0
def findM2(pts1, pts2, F):

    K = np.load('../data/intrinsics.npz')
    K1 = K['K1']
    K2 = K['K2']

    E = sub.essentialMatrix(F, K1, K2)
    M2s = helper.camera2(E)  # four possible
    R = np.zeros((4, 3, 3))

    C2 = np.zeros((4, 3, 4))
    C1 = np.zeros((3, 4))
    C1[0, 0] = 1
    C1[1, 1] = 1
    C1[2, 2] = 1
    C1 = K1 @ C1
    for i in range(4):
        print(C2[i].shape, K2.shape, M2s[:, :, i].shape)
        C2[i] = K2 @ M2s[:, :, i]
        P, err = sub.triangulate(C1, pts1, C2[i], pts2)
        if (P[:, -1] >= 0).all():
            M2 = M2s[:, :, i]
            print('find', i, err)
            C2 = C2[i]
            # np.savez('q3_3.npz', M2=M2, C2=C2, P=P)
            break
    # print(np.load('q3_3.npz')['C2'].shape)
    return M2
示例#2
0
def main():
    data = np.load('../data/some_corresp.npz')
    im1 = plt.imread('../data/im1.png')
    im2 = plt.imread('../data/im2.png')

    N = data['pts1'].shape[0]
    M = 640

    intrinsics = np.load('../data/intrinsics.npz')
    K1 = intrinsics['K1']
    K2 = intrinsics['K2']

    F = sub.eightpoint(data['pts1'], data['pts2'], M)
    E = sub.essentialMatrix(F, K1, K2)
    M1 = np.zeros((3, 4))
    M1[0, 0] = 1
    M1[1, 1] = 1
    M1[2, 2] = 1
    M2s = camera2(E)
    C1 = K1.dot(M1)

    for i in range(4):
        M2 = M2s[:, :, i]
        C2 = K2.dot(M2)
        P, err = sub.triangulate(C1, data['pts1'], C2, data['pts2'])
        if (P[:, -1] >= 0.0).all():
            break

    np.savez('q3_3.npz', M2=M2, C2=C2, P=P)
示例#3
0
def bestM2(pts1, pts2, M, K1, K2):
    F = sub.eightpoint(pts1, pts2, M)
    E = sub.essentialMatrix(F, K1, K2)

    M1 = np.zeros((3,4))
    M1[0,0] = 1
    M1[1,1] = 1
    M1[2,2] = 1

    C1 = np.matmul(K1, M1)

    P = []
    error = []
    num_pos = []
    Marray = hp.camera2(E)
    h,w,d = Marray.shape
    for i in range(0, d):
        C2 = np.matmul(K2, Marray[:,:,i])
        Pi, erri = sub.triangulate(C1, pts1, C2, pts2)
        P.append(Pi)
        error.append(erri)
        ind = np.where(Pi[:,2] > 0)
        num_pos.append(len(ind[0]))

    P = np.stack(P, axis=-1)
    correct = np.equal(num_pos, P.shape[0])
    ind = np.where(correct)[0][0]
    M2 = Marray[:,:,ind]
    M2 = np.reshape(M2, (M2.shape[0],M2.shape[1]))
    P = P[:,:,ind]
    P = np.reshape(P, (P.shape[0],P.shape[1]))
    C2 = np.matmul(K2,M2)

    return M1,C1,M2,C2,P
示例#4
0
def test_M2_solution(pts1, pts2, intrinsics):
	'''
	Estimate all possible M2 and return the correct M2 and 3D points P
	:param pred_pts1:
	:param pred_pts2:
	:param intrinsics:
	:return: M2, the extrinsics of camera 2
			 C2, the 3x4 camera matrix
			 P, 3D points after triangulation (Nx3)
	'''
	K1 = intrinsics['K1']
	K2 = intrinsics['K2']

	M1 = np.hstack(( np.identity(3), np.zeros((3,1)) ))

	M = 640
	F = sub.eightpoint(pts1, pts2, M)
	E = sub.essentialMatrix(F, K1, K2)
	M2 = helper.camera2(E)

	C1 = K1 @ M1
	err_min = float('inf')
	for i in range(M2.shape[-1]):
		temp_C2 = K2 @ M2[:,:,i]
		temp_P, err = sub.triangulate(C1, pts1, temp_C2, pts2)

		if err < err_min:
		# if np.min(temp_P[:,-1]) > 0:
			C2 = temp_C2
			P = temp_P
			M2_single = M2[:,:,i]
		# print('errors:', err)
	return M2_single, C2, P
示例#5
0
def test_M2_solution(pts1, pts2, intrinsics, M):
    '''
    Estimate all possible M2 and return the correct M2 and 3D points P
    :param pred_pts1:
    :param pred_pts2:
    :param intrinsics:
    :param M: a scalar parameter computed as max (imwidth, imheight)
    :return: M2, the extrinsics of camera 2
    		 C2, the 3x4 camera matrix
    		 P, 3D points after triangulation (Nx3)
    '''
    F = submission.eightpoint(pts1, pts2, M)
    F = np.asarray(F)

    intrinsics = np.load("../data/intrinsics.npz")
    K1 = intrinsics['K1']
    K2 = intrinsics['K2']

    #print(K1.shape,K2.shape)
    e = submission.essentialMatrix(F, K1, K2)

    M1 = M1 = np.zeros((3, 4))
    M1[0, 0] = 1
    M1[1, 1] = 1
    M1[2, 2] = 1
    M2_ = helper.camera2(e)

    print(M2_.shape)

    C1 = K1 @ M1
    tee = 0
    err_final = 10000
    for i in range(0, 4):
        print(i)

        M2 = M2_[:, :, i]

        C2 = K2 @ M2
        #print(C2.shape)

        W, err = submission.triangulate(C1, pts1, C2, pts2)
        z = W[:, 2]
        #print(W[:,2])

        tee = z[z < 0]

        #print(tee)
        #print(err)
        #if err<err_final:
        if len(tee) == 0:
            err_final = err

            #print(err_final)
            C2_final = C2
            M2_final = M2
            P_final = W
            print(P_final)
            print(err_final)

    return M2_final, C2_final, P_final
def findM2(pts1, pts2, F, K1, K2):
    # Compute essential matrix
    E = sub.essentialMatrix(F, K1, K2)

    # Copmute camera 1 matrix
    M1 = np.concatenate([np.eye(3), np.zeros([3, 1])], axis=1)
    C1 = K1 @ M1

    # Find the correct M2
    best_data = [None, None, None]
    best_err = np.finfo('float').max
    M2s = helper.camera2(E)

    for i in range(4):
        # Compute camera 2 matrix
        C2 = K2 @ M2s[:, :, i]
        P, err = sub.triangulate(C1, pts1, C2, pts2)

        # Ensure all Z values are positive
        if len(P[P[:, 2] > 0]) != P.shape[0]: continue

        # Save the correct data
        if err < best_err:
            best_err = err
            best_data = [M2s[:, :, i], C2, P]

    # Save the data
    # np.savez('q3_3', M2=best_data[0], C2=best_data[1], P=best_data[2])
    # np.savez('q4_2', F=F, M1=M1, C1=C1, M2=best_data[0], C2=best_data[1])

    return C1, best_data[1], M1, best_data[0], best_data[2]
def q5_3(I1, I2, M):
    with np.load("../data/some_corresp_noisy.npz") as data:
        pts1 = data['pts1']
        pts2 = data['pts2']
    
    F, inliers = ransacF(pts1=pts1, pts2=pts2, M=M, nIters=200, tol=4.5)
    print(f"F:\n{F} matched {np.sum(inliers)}/{len(pts1)} points")
    
    # Keep inliers only
    pts1 = pts1[inliers]
    pts2 = pts2[inliers]
    
    # Get Cameras
    with np.load("../data/intrinsics.npz") as data:
        K1 = data['K1']
        K2 = data['K2']
        print(f"K1:\n{K1}\nK2:\n{K2}")
        
    M1 = np.array([[1.0, 0.0, 0.0, 0.0], 
                    [0.0, 1.0, 0.0, 0.0], 
                    [0.0, 0.0, 1.0, 0.0]]) 
    C1 = K1 @ M1
    
    E = essentialMatrix(F, K1, K2)
    print(f"E:\n{E}")

    M2s = camera2(E)
    for i in range(4):
        M2_init = M2s[:, :, i]
        C2 = K2 @ M2_init
        P_init, err_init = triangulate(C1=C1, pts1=pts1, C2=C2, pts2=pts2)
    
        # Valid solution would be the one where z is positive. Thus, the points 
        # are in front of both cameras. 
        if np.all(P_init[:, -1] > 0):
            print(f"M2_init found for i={i+1}:\n{M2_init}\nError:{err_init}")
            break
    
    
    M2, P_opt = bundleAdjustment(K1=K1, M1=M1, p1=pts1, K2=K2, 
                                 M2_init=M2_init, p2=pts2, P_init=P_init)
    C2 = K2 @ M2
    P_opt_, err_opt = triangulate(C1=C1, pts1=pts1, C2=C2, pts2=pts2)
    print(f"M2_opt:\n{M2}\nError:{err_opt}\nP_opt: {P_opt.shape}\n")

    # Plot
    fig, ax = plt.subplots(1, 2, subplot_kw=dict(projection='3d'))
    ax[0].set_title(f'Initial - Rep. err: {round(err_init, 5)} ')
    ax[1].set_title(f'Optimized - Rep. err: {round(err_opt, 5)} ')
    ax[0].scatter(P_init[:, 0].tolist(), P_init[:, 1].tolist(), P_init[:, 2].tolist(), 'b')
    ax[1].scatter(P_opt[:, 0].tolist(), P_opt[:, 1].tolist(), P_opt[:, 2].tolist(), 'r')
    plt.show()
    plt.close()
示例#8
0
def bundle_adjustment():
    data = np.load('../data/some_corresp_noisy.npz')
    im1 = plt.imread('../data/im1.png')
    im2 = plt.imread('../data/im2.png')

    N = data['pts1'].shape[0]
    M = max(im1.shape[0], im1.shape[1])

    # Estimate fundamental matrix F
    F = sub.eightpoint(data['pts1'], data['pts2'], M)

    # Get 2D points and essential matrix E
    intrinsics = np.load('../data/intrinsics.npz')
    K1 = intrinsics['K1']
    K2 = intrinsics['K2']
    pts1 = data['pts1']
    pts2 = data['pts2']
    F, inliers = sub.ransacF(pts1, pts2, M)
    E = sub.essentialMatrix(F, K1, K2)

    # Get four possible decomposition M2 from E
    M2s = helper.camera2(E)

    # Testing four M2 through triangulation to get a correct M2
    M1 = np.hstack((np.eye(3), np.zeros((3, 1))))
    C1 = np.dot(K1, M1)

    for i in range(4):
        M2 = M2s[:, :, i]
        C2 = np.dot(K2, M2)
        w, err = sub.triangulate(C1, pts1[inliers], C2, pts2[inliers])
        if np.all(w[:, -1] > 0):
            break
    print("Reprojection error with bundle adjustment:", err)

    # Get 3D points
    M2, P = sub.bundleAdjustment(K1, M1, pts1[inliers], K2, M2, pts2[inliers],
                                 w)
    print("Optimized matrix:", M2)

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(P[:, 0], P[:, 1], P[:, 2], marker='o', s=2)
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('z')
    plt.show(block=True)
def q53():
    data = np.load('../data/some_corresp_noisy.npz')

    Ks = np.load('../data/intrinsics.npz')
    K1 = Ks['K1']
    K2 = Ks['K2']
    pts1 = data['pts1']
    pts2 = data['pts2']
    im1 = plt.imread('../data/im1.png')
    im2 = plt.imread('../data/im2.png')
    M = np.max(np.shape(im1))
    # print(np.shape(im1))
    # print(M)

    # using RANSAC to find F
    F, inliers = sub.ransacF(data['pts1'], data['pts2'], M)
    print(F)
    E = sub.essentialMatrix(F, K1, K2)
    # print(E)
    M1 = np.hstack(((np.eye(3)), np.zeros((3, 1))))
    M2s = helper.camera2(E)
    row, col, num = np.shape(M2s)
    # print(M1)
    C1 = np.matmul(K1, M1)
    # minerr = np.inf
    # res = 0
    for i in range(num):
        M2 = M2s[:, :, i]
        C2 = np.matmul(K2, M2)
        P, err = sub.triangulate(C1, pts1[inliers], C2, pts2[inliers])
        if (np.all(P[:, 2] > 0)):
            break
    # P, err = sub.triangulate(C1, pts1[inliers], C2, pts2[inliers])
    M2, P = sub.bundleAdjustment(K1, M1, pts1[inliers], K2, M2, pts2[inliers],
                                 P)

    fig = plt.figure()
    ax = Axes3D(fig)
    ax.scatter(P[:, 0], P[:, 1], P[:, 2])
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    # ax.set_zlim3d(3., 4.5)

    plt.show()
示例#10
0
def findM2():
    data = np.load('../data/some_corresp.npz')
    # data = np.load('../data/some_corresp_noisy.npz')

    Ks = np.load('../data/intrinsics.npz')
    K1 = Ks['K1']
    K2 = Ks['K2']
    pts1 = data['pts1']
    pts2 = data['pts2']
    im1 = plt.imread('../data/im1.png')
    im2 = plt.imread('../data/im2.png')
    M = np.max(np.shape(im1))
    # print(np.shape(im1))
    # print(M)

    F = sub.eightpoint(data['pts1'], data['pts2'], M)

    # using RANSAC to find F
    # F,inliers = sub.ransacF(data['pts1'], data['pts2'], M)

    E = sub.essentialMatrix(F, K1, K2)
    print(E)
    M1 = np.hstack(((np.eye(3)), np.zeros((3, 1))))
    M2s = helper.camera2(E)
    row, col, num = np.shape(M2s)
    print(M1)
    C1 = np.matmul(K1, M1)
    # minerr = np.inf
    # res = 0
    for i in range(num):
        M2 = M2s[:, :, i]
        C2 = np.matmul(K2, M2)
        P, err = sub.triangulate(C1, pts1, C2, pts2)
        if (np.all(P[:, 2] > 0)):
            break
    #     if (err<minerr):
    #         minerr = err
    #         res = i
    # M2 = M2s[:,:,res]
    # C2 = np.matmul(K2, M2)
    if (os.path.isfile('q3_3.npz') == False):
        np.savez('q3_3.npz', M2=M2, C2=C2, P=P)

    return M1, C1, M2, C2, F
示例#11
0
def q3_1():

    with np.load(q2_1_file) as data:
        F = data['F']
        print(f"F:\n{F}")

    with np.load("../data/intrinsics.npz") as data:
        K1 = data['K1']
        K2 = data['K2']
        print(f"K1:\n{K1}\nK2:\n{K2}")

    E = essentialMatrix(F=F, K1=K1, K2=K2)
    np.savez(q3_1_file, E=E)

    # sanity check
    with np.load(q3_1_file) as data:
        E = data['E']
        assert E.shape == (3, 3), f"E shape is {E.shape} instead of (3, 3)"
        print(f"E:\n{E}")
def main():
    data = np.load('../data/some_corresp.npz')
    im1 = plt.imread('../data/im1.png')
    im2 = plt.imread('../data/im2.png')

    N = data['pts1'].shape[0]
    M = 640

    intrinsics = np.load('../data/intrinsics.npz')
    temple_pts = np.load('../data/templeCoords.npz')
    x1, y1 = temple_pts['x1'], temple_pts['y1']
    x1 = np.squeeze(x1)
    y1 = np.squeeze(y1)
    K1 = intrinsics['K1']
    K2 = intrinsics['K2']
    F = sub.eightpoint(data['pts1'], data['pts2'], M)
    E = sub.essentialMatrix(F, K1, K2)
    M1 = np.zeros((3, 4))
    M1[0, 0] = 1
    M1[1, 1] = 1
    M1[2, 2] = 1
    M2s = camera2(E)
    C1 = K1.dot(M1)

    x2 = []
    y2 = []
    for i, j in zip(x1, y1):
        k, l = sub.epipolarCorrespondence(im1, im2, F, i, j)
        x2.append(k)
        y2.append(l)
    x2 = np.asarray(x2)
    y2 = np.asarray(y2)

    for i in range(4):
        M2 = M2s[:, :, i]
        C2 = K2.dot(M2)
        P, err = sub.triangulate(C1,
                                 np.array([x1, y1]).T, C2,
                                 np.array([x2, y2]).T)
        if (P[:, -1] >= 0.0).all():
            break
    visualize_3d(P)
    np.savez('q4_2.npz', F=F, M1=M1, M2=M2, C1=C1, C2=C2)
示例#13
0
def bestM2(pts1, pts2, F, K1, K2):

    # CALCULATE E
    E = sub.essentialMatrix(F, K1, K2)

    # CALCULATE M1 and M2
    M1 = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])

    M2_list = helper.camera2(E)

    #  TRIANGULATION
    C1 = K1.dot(M1)

    P_best = np.zeros((pts1.shape[0], 3))
    M2_best = np.zeros((3, 4))
    C2_best = np.zeros((3, 4))
    err_best = np.inf

    error_list = []

    index = 0
    for i in range(M2_list.shape[2]):
        M2 = M2_list[:, :, i]
        C2 = K2.dot(M2)
        P_i, err = sub.triangulate(C1, pts1, C2, pts2)
        error_list.append(err)
        z_list = P_i[:, 2]
        if all(z > 0 for z in z_list):
            index = i
            err_best = err
            P_best = P_i
            M2_best = M2
            C2_best = C2

    # print('error_list: ', error_list)
    # print('err_best: ', err_best)
    # print('M2_best: ', M2_best )
    # print('C2_best: ', C2_best  )
    # print('P_best: ', P_best )
    # print('index: ', index)

    return P_best, C2_best, M2_best, err_best
示例#14
0
def getBaParams(data, M):
    intrinsics = np.load('../data/intrinsics.npz')
    K1 = intrinsics['K1']
    K2 = intrinsics['K2']

    F, inliers = sub.ransacF(data['pts1'], data['pts2'], M)
    E = sub.essentialMatrix(F, K1, K2)
    M1 = np.zeros((3, 4))
    M1[0, 0] = 1
    M1[1, 1] = 1
    M1[2, 2] = 1
    M2s = camera2(E)
    C1 = K1.dot(M1)

    for i in range(4):
        M2 = M2s[:, :, i]
        C2 = K2.dot(M2)
        P, err = sub.triangulate(C1, data['pts1'][inliers], C2,
                                 data['pts2'][inliers])
        if (P[:, -1] >= 0.0).all():
            break
    return K1, K2, M1, M2, P, inliers
示例#15
0
import numpy as np
import matplotlib.pyplot as plt
import submission as sub
import helper as hp

data = np.load('../data/some_corresp.npz')
im1 = plt.imread('../data/im1.png')
im2 = plt.imread('../data/im2.png')
K_matrices = np.load('../data/intrinsics.npz')

N = data['pts1'].shape[0]
M = 640

# 2.1
#F8 = sub.eightpoint(data['pts1'], data['pts2'], M)
#hp.displayEpipolarF(im1,im2,F8)
#F = F8

#2.2
F7 = sub.sevenpoint(data['pts1'][21:28, :], data['pts2'][21:28, :], M)
hp.displayEpipolarF(im1, im2, F7)

E = sub.essentialMatrix(F, K_matrices['K1'], K_matrices['K2'])
示例#16
0
文件: q3_1.py 项目: htcr/epipolar
import numpy as np
import cv2
from submission import eightpoint, essentialMatrix

im1 = cv2.imread('../data/im1.png')[:, :, ::-1]
im2 = cv2.imread('../data/im2.png')[:, :, ::-1]
corresp = np.load('../data/some_corresp.npz')
pts1 = corresp['pts1']
pts2 = corresp['pts2']
M = np.max(im1.shape)

F = eightpoint(pts1, pts2, M)

intrinsics = np.load('../data/intrinsics.npz')
K1, K2 = intrinsics['K1'], intrinsics['K2']
E = essentialMatrix(F, K1, K2)
print(E)
# 2.2
#F7 = sub.sevenpoint(data['pts1'][:7, :], data['pts2'][:7, :], M)
F7 = sub.sevenpoint(data['pts1'][70:77, :], data['pts2'][70:77, :], M)
assert (len(F7) == 1) | (len(F7) == 3), 'sevenpoint returns length-1/3 list'

for f7 in F7:
    assert f7.shape == (3, 3), 'seven returns list of 3x3 matrix'

#print(F7.shape)
print('F7')
print(F7)
#helper.displayEpipolarF(im1, im2, F7[0])

# 3.1
print('E')
print(sub.essentialMatrix(F8, K1, K2))

C1 = np.concatenate([np.random.rand(3, 3), np.ones([3, 1])], axis=1)
C2 = np.concatenate([np.random.rand(3, 3), np.ones([3, 1])], axis=1)

P, err = sub.triangulate(C1, data['pts1'], C2, data['pts2'])
print(err)
assert P.shape == (N, 3), 'triangulate returns Nx3 matrix P'
assert np.isscalar(err), 'triangulate returns scalar err'

# 4.1
x2, y2 = sub.epipolarCorrespondence(im1, im2, F8, data['pts1'][0, 0],
                                    data['pts1'][0, 1])
assert np.isscalar(x2) & np.isscalar(
    y2), 'epipolarCorrespondence returns x & y coordinates'
np.savez('../results/q4_1.npz', F=F8, pts1=data['pts1'], pts2=data['pts2'])
示例#18
0
    K2 = intrinsics['K2']



    im1 = cv2.imread('../data/im1.png')
    im2 = cv2.imread('../data/im2.png')

    temple_coords = np.load('../data/templeCoords.npz')
    x1 = temple_coords['x1']
    y1 = temple_coords['y1']

    M = max(im1.shape[0],im1.shape[1])


    F_array = submission.eightpoint(pts1, pts2, M)
    E = submission.essentialMatrix(F_array, K1, K2)

    I= np.eye(3)

    iter_range=4
    zero_array=np.zeros((3, 1))
    M1 = np.hstack((I, zero_array))
    C1 = np.matmul(K1 ,M1)

    M2_prev = helper.camera2(E)

    for i in range(iter_range):
        C2 = np.matmul(K2 ,M2_prev[:, :, i])
        W, err = submission.triangulate(C1, pts1, C2, pts2)
        print (err)
        if np.all(W[:, 2] > 0):
im2 = plt.imread('../data/im2.png')

K = np.load('../data/intrinsics.npz')
K1 = K['K1']
K2 = K['K2']

temple = np.load('../data/templeCoords.npz')
x1 = temple['x1']
y1 = temple['y1']

temple_pts = np.hstack((x1, y1))

M = 640

F = submission.eightpoint(pts1, pts2, M)  # EightPoint algrithm to find F
E = submission.essentialMatrix(F, K1, K2)
x2 = np.empty((x1.shape[0], 1))
y2 = np.empty((x1.shape[0], 1))

for i in range(x1.shape[0]):
    corresp = submission.epipolarCorrespondence(im1, im2, F, x1[i], y1[i])
    x2[i] = corresp[0]
    y2[i] = corresp[1]

temple_pts2 = np.hstack((x2, y2))

M1 = np.eye(3)
M1 = np.hstack((M1, np.zeros([3, 1])))
M2_all = helper.camera2(E)

C1 = np.dot(K1, M1)
示例#20
0
def no_bundle_adjustment():
    data = np.load('../data/some_corresp.npz')
    im1 = plt.imread('../data/im1.png')
    im2 = plt.imread('../data/im2.png')

    N = data['pts1'].shape[0]
    M = max(im1.shape[0], im1.shape[1])

    # Estimate fundamental matrix F
    F = sub.eightpoint(data['pts1'], data['pts2'], M)

    # Get essential matrix E
    intrinsics = np.load('../data/intrinsics.npz')
    K1 = intrinsics['K1']
    K2 = intrinsics['K2']
    E = sub.essentialMatrix(F, K1, K2)

    # Read temple coordinates file
    temple_coords = np.load('../data/templeCoords.npz')
    x1_temple = temple_coords['x1']
    y1_temple = temple_coords['y1']

    # Get 2D points in image2 using F
    n = x1_temple.shape[0]
    x2_temple, y2_temple = [], []
    for i in range(n):
        x2, y2 = sub.epipolarCorrespondence(im1, im2, F, x1_temple[i, 0],
                                            y1_temple[i, 0])
        x2_temple.append(x2)
        y2_temple.append(y2)
    x2_temple = np.array(x2_temple).reshape((n, 1))
    y2_temple = np.array(y2_temple).reshape((n, 1))

    pts1_temple = np.hstack((x1_temple, y1_temple))
    pts2_temple = np.hstack((x2_temple, y2_temple))

    # Get four possible decomposition M2 from E
    M2s = helper.camera2(E)

    # Testing four M2 through triangulation to get a correct M2
    M1 = np.hstack((np.eye(3), np.zeros((3, 1))))
    C1 = np.dot(K1, M1)

    errs = np.zeros(4)
    for i in range(4):
        M2 = M2s[:, :, i]
        C2 = np.dot(K2, M2)
        w, err = sub.triangulate(C1, pts1_temple, C2, pts2_temple)
        if np.all(w[:, -1] > 0):
            break
    print("Reprojection error with no bundle adjustment:", err)

    np.savez('q4_2.npz', F=F, M1=M1, M2=M2, C1=C1, C2=C2)

    # Get 3D points
    P_temple = w

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(P_temple[:, 0], P_temple[:, 1], P_temple[:, 2], marker='o', s=2)
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('z')
    plt.show(block=True)
示例#21
0
'''
Q4.2:
    1. Integrating everything together.
    2. Loads necessary files from ../data/ and visualizes 3D reconstruction using scatter
'''
from submission import essentialMatrix
import numpy as np

res = np.load("../results/q2_1.npz")
ks = np.load('../data/intrinsics.npz')
k1 = ks['K1']
k2 = ks['K2']
E = essentialMatrix(res['F'], k1, k2)
E
示例#22
0
    F7 = sub.sevenpoint(pts1, pts2, M)
    assert (len(F7) == 1) | (len(F7)
                             == 3), 'sevenpoint returns length-1/3 list'

    for f7 in F7:
        assert f7.shape == (3, 3), 'seven returns list of 3x3 matrix'
        # hlpr.displayEpipolarF(im1, im2, f7)
    # np.savez('q2_2.npz', F=F7, M=M, pts1=pts1, pts2=pts2)
    print("q2-2:\n", F7)

    # 3.1
    intrinsics_data = np.load('../data/intrinsics.npz')
    # print(intrinsics_data.files)
    # [print(i) for i in intrinsics_data]
    E = sub.essentialMatrix(F8, intrinsics_data["K1"], intrinsics_data["K2"])
    print("q3-1:\n", E)
    M2s = hlpr.camera2(E)
    # print(M2s.shape, "\n", M2s[:,:,0])

    # 3.2
    M1 = np.hstack((np.eye(3), np.zeros((3, 1))))
    M2 = findM2(M2s, intrinsics_data["K1"], intrinsics_data["K2"],
                data['pts1'], data['pts2'])
    C1 = intrinsics_data["K1"] @ M1
    C2 = intrinsics_data["K2"] @ M2

    P, err = sub.triangulate(C1, data['pts1'], C2, data['pts2'])
    assert P.shape == (N, 3), 'triangulate returns Nx3 matrix P'
    assert np.isscalar(err), 'triangulate returns scalar err'
    # np.savez('q3_3.npz', M2=M2, C2=C2, P=P)
 errorvalue = []
 for i in range(0, 3):
     least_error = np.sum(np.square(np.subtract(F, F_seven_temp[i])))
     errorvalue.append(least_error)
 error_index = np.argmin(errorvalue)
 F_seven = F_seven_temp[error_index]
 helper.displayEpipolarF(image1, image2, F_seven)
 #intrinsic parameters
 intrinsic = np.load(
     '/home/geekerlink/Desktop/Computer Vision/Homeworks/hw4/hw4/data/intrinsics.npz'
 )
 b = intrinsic.files
 k1 = intrinsic[b[0]]
 k2 = intrinsic[b[1]]
 #calculating essential matrix
 E = submission.essentialMatrix(F, k1, k2)
 #matching epipolar correspondences
 epipolarMatchGUI(image1, image2, F)
 #loading image 1 coordinates
 points1 = np.load(
     '/home/geekerlink/Desktop/Computer Vision/Homeworks/hw4/hw4/data/templeCoords.npz'
 )
 x1 = points1['x1']
 y1 = points1['y1']
 number_points = len(x1)
 x2 = np.zeros((number_points, 1))
 y2 = np.zeros((number_points, 1))
 #finding corresponding points in image 2
 for i in range(0, number_points):
     [x2_temp,
      y2_temp] = submission.epipolarCorrespondence(image1, image2, F, x1[i],
示例#24
0
'''
import numpy as np
import submission
import helper
import matplotlib.pyplot as plt

data = np.load('../data/some_corresp.npz')
im1 = plt.imread('../data/im1.png')
im2 = plt.imread('../data/im2.png')
dataK = np.load('../data/intrinsics.npz')

N = data['pts1'].shape[0]
M = 640

F = submission.eightpoint(data['pts1'], data['pts2'], M)
E = submission.essentialMatrix(F, dataK['K1'], dataK['K2'])

Ms = helper.camera2(E)

M_mat = np.eye(3)
M_mat = np.hstack((M_mat, np.zeros((3, 1))))

C1 = np.dot(dataK['K1'], M_mat)

err = np.inf

for idx in range(Ms.shape[2]):

    C2 = np.dot(dataK['K2'], Ms[:, :, idx])

    P_calc, err_calc = submission.triangulate(C1, data['pts1'], C2,
def test_M2_solution(pts1, pts2, intrinsics, M):
    '''
	Estimate all possible M2 and return the correct M2 and 3D points P
	:param pred_pts1:
	:param pred_pts2:
	:param intrinsics:
	:param M: a scalar parameter computed as max (imwidth, imheight)
	:return: M2, the extrinsics of camera 2
			 C2, the 3x4 camera matrix
			 P, 3D points after triangulation (Nx3)
	'''
    FEight = submission.eightpoint(pts1, pts2, M)
    KIntrinsic1 = intrinsics['K1']
    KIntrinsic2 = intrinsics['K2']
    E = submission.essentialMatrix(FEight, KIntrinsic1, KIntrinsic2)
    ExtrinsicMList = helper.camera2(E)
    ProjMatrix1 = np.zeros([3, 4])
    ProjMatrix1[0, 0] = 1
    ProjMatrix1[1, 1] = 1
    ProjMatrix1[2, 2] = 1

    maxCount = -1
    minError = 999999999
    bestC2 = np.zeros([3, 4])
    P = np.zeros((pts1.shape[0], 3))
    for i in range(ExtrinsicMList.shape[2]):
        M1 = ProjMatrix1
        M2 = ExtrinsicMList[:, :, i]
        [W1, err1] = submission.triangulate(np.matmul(KIntrinsic1, M1), pts1,
                                            np.matmul(KIntrinsic2, M2), pts2)
        zIndicesCam1 = W1[:, 2]
        validZValCam1 = np.where(zIndicesCam1 > 0)

        Rinv = np.linalg.inv(M2[:, 0:3])
        tInv = -np.matmul(np.linalg.inv(M2[:, 0:3]), M2[:, 3])

        M2_new = ProjMatrix1
        M1_new = np.zeros((3, 4))
        M1_new[:, 0:3] = Rinv
        M1_new[:, 3] = tInv

        [W2,
         err2] = submission.triangulate(np.matmul(KIntrinsic1, M1_new), pts1,
                                        np.matmul(KIntrinsic2, M2_new), pts2)
        zIndicesCam2 = W2[:, 2]
        validZValCam2 = np.where(zIndicesCam2 > 0)
        #print (validZValCam2, validZValCam1)
        validZBothCam = np.intersect1d(validZValCam1, validZValCam2)
        #print (validZBothCam)
        validCount = validZBothCam.size
        if validCount > maxCount:
            maxCount = validCount
            maxError = err1
            bestM2 = M2
            P = W1

    #print (maxCount)
    M2 = bestM2
    C2 = np.matmul(KIntrinsic2, M2)
    #print (P)
    return M2, C2, P
示例#26
0
from helper import camera2
import submission as sub

#load correspondences
corrs = np.load('../data/some_corresp.npz')
pts1 = corrs['pts1']
pts2 = corrs['pts2']

#load intrinsic camera matrices
ks = np.load('../data/intrinsics.npz')
k1 = ks['K1']
k2 = ks['K2']

#calculate F and E
M = np.max(np.hstack((pts1, pts2)))

F = sub.eightpoint(pts1, pts2, M)
E = sub.essentialMatrix(F, k1, k2)

M1 = np.hstack((np.eye(3), np.zeros((3, 1))))
C1 = k1 @ M1

M2s = camera2(E)
for ind in range(M2s.shape[2]):
    M2 = M2s[:, :, ind]
    C2 = k2 @ M2
    P, err = sub.triangulate(C1, pts1, C2, pts2)
    if np.all(P[:, 2] > 0):
        #This means we one where the points are infront of the camera
        np.savez("../results/q3_3", M2=M2, C2=C2, P=P)
示例#27
0
import submission as sub
from helper import camera2

im1 = cv2.imread('../data/im1.png')
im2 = cv2.imread('../data/im2.png')
pts = np.load('../data/some_corresp.npz')
pts1 = pts["pts1"]
pts2 = pts["pts2"]

M = max((im1.shape[0], im1.shape[1]))
F = sub.eightpoint(pts1, pts2, M)

intrinsics = np.load('../data/intrinsics.npz')
K1 = intrinsics['K1']
K2 = intrinsics['K2']
E = sub.essentialMatrix(F, K1, K2)

M1 = np.concatenate((np.eye(3), np.ones((3, 1))), axis=1)
C1 = np.dot(K1, M1)
M2s = camera2(E)

coords = np.load('../data/templeCoords.npz')
x1 = coords['x1']
y1 = coords['y1']

pts1 = np.hstack([x1, y1])
pts2 = np.zeros(pts1.shape)

for i in range(x1.shape[0]):
    x = pts1[i, 0]
    y = pts1[i, 1]
示例#28
0
    # print(Fs.shape)
    # im1 = cv2.imread('../data/im1.png')
    # im2 = cv2.imread('../data/im2.png')
    # if Fs.ndim == 3:
    #     for F in Fs:
    #         helper.displayEpipolarF(im1, im2, F)
    # else:
    #     helper.displayEpipolarF(im1, im2, Fs)

    # 3.1
    K = np.load('../data/intrinsics.npz')
    K1 = K['K1']
    K2 = K['K2']
    data = np.load('q2_1.npz')
    F = data['F']
    E = src.essentialMatrix(F, K1, K2)
    print(E)
    # 3.2

    # M1 = np.zeros((3, 4))
    # M1[0, 0] = 1
    # M1[1, 1] = 0
    # M1[2, 2] = 0
    # C1 = K1 @ M1
    # C2 = K2 @ M2
    # P, err = src.triangulate(C1, pts1, C2, pts2)
    # print(err)

    # 4.1
    # im1 = cv2.imread('../data/im1.png')
    # im2 = cv2.imread('../data/im2.png')
示例#29
0
    M = max(I1.shape[0], I1.shape[1])
    F = eightpoint(pts1=pts1, pts2=pts2, M=M)
    # np.savez(F_file, F=F, M=M)
print(f"F:\n{F}")

# Find the essential matrix
with np.load("../data/intrinsics.npz") as data:
    K1 = data['K1']
    K2 = data['K2']

E_file = "q3-1.npz"
if os.path.exists(E_file):
    with np.load(E_file, allow_pickle=True) as data:
        E = data['E']
else:
    E = essentialMatrix(F=F, K1=K1, K2=K2)
    np.savez(E_file, E=E)
print(f"E:\n{E}")

# Triangulate
q3_3_file = "q3_3.npz"
M1 = np.array([[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0],
               [0.0, 0.0, 1.0, 0.0]])
M2s = camera2(E)
C1 = K1 @ M1
for i in range(4):
    M2 = M2s[:, :, i]
    C2 = K2 @ M2
    P, err = triangulate(C1=C1, pts1=pts1, C2=C2, pts2=pts2)

    # Valid solution would be the one where z is positive. Thus, the points