def test_get_multiple_new_suggestions(self): randomSearchAlgorithm = RandomSearchAlgorithm() # Assert getting one trial new_trials = randomSearchAlgorithm.get_new_suggestions(self.study.id, number=1) self.assertEqual(len(new_trials), 1) # Assert getting multiple trials new_trials = randomSearchAlgorithm.get_new_suggestions(self.study.id, number=10) self.assertEqual(len(new_trials), 10)
def v1_study_suggestions(request, study_id): # Create the trial if request.method == "POST": data = json.loads(request.body) trials_number = 1 trial_name = "Trial" if "trials_number" in data: trials_number = data["trials_number"] if "trial_name" in data: trial_name = data["trial_name"] study = Study.objects.get(id=study_id) trials = Trial.objects.filter(study_id=study_id) trials = [trial for trial in trials] if study.algorithm == "RandomSearchAlgorithm": algorithm = RandomSearchAlgorithm() elif study.algorithm == "GridSearchAlgorithm": algorithm = GridSearchAlgorithm() elif study.algorithm == "BayesianOptimization": algorithm = BayesianOptimization() else: return JsonResponse({ "error": "Unknown algorithm: {}".format(study.algorithm) }) new_trials = algorithm.get_new_suggestions(study.id, trials, trials_number) return JsonResponse({"data": [trial.to_json() for trial in new_trials]}) else: return JsonResponse({"error": "Unsupported http method"})
def v1_study_suggestions(request, study_name): # Create the trial if request.method == "POST": data = json.loads(request.body) trials_number = 1 # TODO: Use the trial name to create trial object trial_name = "Trial" if "trials_number" in data: trials_number = data["trials_number"] if "trial_name" in data: trial_name = data["trial_name"] study = Study.objects.get(name=study_name) trials = Trial.objects.filter(study_name=study_name) trials = [trial for trial in trials] if study.algorithm == "RandomSearch": algorithm = RandomSearchAlgorithm() elif study.algorithm == "GridSearch": algorithm = GridSearchAlgorithm() elif study.algorithm == "BayesianOptimization": algorithm = BayesianOptimization() elif study.algorithm == "TPE": algorithm = TpeAlgorithm() elif study.algorithm == "HyperoptRandomSearch": algorithm = HyperoptRandomSearchAlgorithm elif study.algorithm == "SimulateAnneal": algorithm = SimulateAnnealAlgorithm() elif study.algorithm == "QuasiRandomSearch": algorithm = QuasiRandomSearchAlgorithm() elif study.algorithm == "ChocolateRandomSearch": algorithm = ChocolateRandomSearchAlgorithm() elif study.algorithm == "ChocolateGridSearch": algorithm = ChocolateGridSearchAlgorithm() elif study.algorithm == "ChocolateBayes": algorithm = ChocolateBayesAlgorithm() elif study.algorithm == "CMAES": algorithm = CmaesAlgorithm() elif study.algorithm == "MOCMAES": algorithm = MocmaesAlgorithm() elif study.algorithm == "SkoptBayesianOptimization": algorithm = SkoptBayesianOptimization() else: return JsonResponse( {"error": "Unknown algorithm: {}".format(study.algorithm)}) new_trials = algorithm.get_new_suggestions(study.name, trials, trials_number) return JsonResponse( {"data": [trial.to_json() for trial in new_trials]}) else: return JsonResponse({"error": "Unsupported http method"})
def test_get_new_suggestions(self): randomSearchAlgorithm = RandomSearchAlgorithm() new_trials = randomSearchAlgorithm.get_new_suggestions( self.study.id, self.trials) # Assert getting one trial self.assertEqual(len(new_trials), 1) # Assert getting the random trial new_trial = new_trials[0] new_parameter_values = new_trial.parameter_values new_parameter_values_json = json.loads(new_parameter_values) self.assertTrue("hidden1" in new_parameter_values_json) self.assertTrue(new_parameter_values_json["hidden1"] >= 40) self.assertTrue(new_parameter_values_json["hidden1"] <= 400)
def test_get_new_suggestions(self): randomSearchAlgorithm = RandomSearchAlgorithm() new_trials = randomSearchAlgorithm.get_new_suggestions(self.study.id, number=1) new_trial = new_trials[0] new_parameter_values_json = json.loads(new_trial.parameter_values) self.assertTrue(10 >= new_parameter_values_json["hidden1"] >= 1) self.assertTrue( 0.5 >= new_parameter_values_json["learning_rate"] >= 0.01) self.assertTrue( new_parameter_values_json["hidden2"] in [8, 16, 32, 64]) self.assertTrue(new_parameter_values_json["optimizer"] in ["sgd", "adagrad", "adam", "ftrl"]) self.assertTrue(new_parameter_values_json["batch_normalization"] in ["true", "false"])
def get_suggestions(self, study_name, trials_number=1): study = Study.objects.get(name=study_name) trials = Trial.objects.filter(study_name=study_name) if study.algorithm == "RandomSearch": algorithm = RandomSearchAlgorithm() elif study.algorithm == "GridSearch": algorithm = GridSearchAlgorithm() elif study.algorithm == "BayesianOptimization": algorithm = BayesianOptimization() elif study.algorithm == "TPE": algorithm = TpeAlgorithm() elif study.algorithm == "HyperoptRandomSearch": algorithm = HyperoptRandomSearchAlgorithm elif study.algorithm == "SimulateAnneal": algorithm = SimulateAnnealAlgorithm() # elif study.algorithm == "QuasiRandomSearch": # algorithm = QuasiRandomSearchAlgorithm() # elif study.algorithm == "ChocolateRandomSearch": # algorithm = ChocolateRandomSearchAlgorithm() # elif study.algorithm == "ChocolateGridSearch": # algorithm = ChocolateGridSearchAlgorithm() # elif study.algorithm == "ChocolateBayes": # algorithm = ChocolateBayesAlgorithm() # elif study.algorithm == "CMAES": # algorithm = CmaesAlgorithm() # elif study.algorithm == "MOCMAES": # algorithm = MocmaesAlgorithm() elif study.algorithm == "SkoptBayesianOptimization": algorithm = SkoptBayesianOptimization() else: raise ValueError('Error, Unknown algorithm: {}'.format( study.algorithm)) new_trials = algorithm.get_new_suggestions(study.name, trials, trials_number) return new_trials
def get_new_suggestions(self, study_name, trials=[], number=1): # TODO: Only support returning one trial number = 1 # Get study and completed data study = Study.objects.get(name=study_name) completed_trials = Trial.objects.filter(study_name=study_name, status="Completed") study_configuration_json = json.loads(study.study_configuration) random_init_trial_number = study_configuration_json.get( "randomInitTrials", 3) params = study_configuration_json["params"] study_goal = study_configuration_json["goal"] # Use random search if it has less dataset if len(completed_trials) < random_init_trial_number: randomSearchAlgorithm = RandomSearchAlgorithm() return_trials = randomSearchAlgorithm.get_new_suggestions( study_name, trials, number) return return_trials # Construct the map of name and scope to compute gaussian process acquisition_function_kappa = 5 # Example: {'x': (-4, 4), 'y': (-3, 3)} # name_scope_map = {} # Construct the list with only scope, Example: [(40, 400)] bounds = [] for param in params: if param["type"] == "DOUBLE" or param["type"] == "INTEGER": min_value = param["minValue"] max_value = param["maxValue"] # name_scope_map[param["parameterName"]] = (min_value, max_value) bounds.append((min_value, max_value)) elif param["type"] == "DISCRETE": feasible_points_string = param["feasiblePoints"] feasible_points = [ float(value.strip()) for value in feasible_points_string.split(",") ] for feasible_point in feasible_points: parameter_name = "{}_{}".format(param["parameterName"], feasible_point) # name_scope_map[parameter_name] = (0, 1) bounds.append((0, 1)) elif param["type"] == "CATEGORICAL": feasible_points_string = param["feasiblePoints"] feasible_points = [ value.strip() for value in feasible_points_string.split(",") ] for feasible_point in feasible_points: parameter_name = "{}_{}".format(param["parameterName"], feasible_point) # name_scope_map[parameter_name] = (0, 1) bounds.append((0, 1)) # Make sure it is numpy ndarry bounds = np.asarray(bounds) # Construct data to train gaussian process, Example: [[50], [150], [250]] init_points = [] # Example: [0.6, 0.8, 0.6] init_labels = [] # Construct train data with completed trials for trial in completed_trials: # Example: {"learning_rate": 0.01, "optimizer": "ftrl"} parameter_values_json = json.loads(trial.parameter_values) # Example: [0.01, "ftrl"] instance_features = [] instance_label = trial.objective_value for param in params: if param["type"] == "DOUBLE" or param["type"] == "INTEGER": instance_feature = parameter_values_json[ param["parameterName"]] instance_features.append(instance_feature) elif param["type"] == "DISCRETE": feasible_points_string = param["feasiblePoints"] feasible_points = [ float(value.strip()) for value in feasible_points_string.split(",") ] parameter_value = parameter_values_json[ param["parameterName"]] for feasible_point in feasible_points: if feasible_point == parameter_value: instance_features.append(1) else: instance_features.append(0) elif param["type"] == "CATEGORICAL": feasible_points_string = param["feasiblePoints"] # Example: ["sgd", "adagrad", "adam", "ftrl"] feasible_points = [ value.strip() for value in feasible_points_string.split(",") ] # Example: "ftrl" parameter_value = parameter_values_json[ param["parameterName"]] for feasible_point in feasible_points: if feasible_point == parameter_value: instance_features.append(1) else: instance_features.append(0) init_points.append(instance_features) init_labels.append(instance_label) # Example: ndarray([[ 50], [150], [250]]) train_features = np.asarray(init_points) # Example: ndarray([0.6, 0.8, 0.6]) train_labels = np.asarray(init_labels) # current_max_label = train_labels.max() # Train with gaussian process gp = GaussianProcessRegressor( kernel=Matern(nu=2.5), n_restarts_optimizer=25, ) gp.fit(train_features, train_labels) # Example: [[-3.66909025, -0.84486644], [-1.93270006, -0.95367483], [1.36095631, 0.61358525], ...], shape is [100000, 2] x_tries = np.random.uniform(bounds[:, 0], bounds[:, 1], size=(100000, bounds.shape[0])) mean, std = gp.predict(x_tries, return_std=True) # Confidence bound criteria acquisition_fucntion_values = mean + acquisition_function_kappa * std #x_max = x_tries[acquisition_fucntion_values.argmax()] # tobe #x_max = x_tries[acquisition_fucntion_values.argmin()] if study_goal == "MAXIMIZE": x_max = x_tries[acquisition_fucntion_values.argmax()] #max_acquision_fucntion_value = acquisition_fucntion_values.max() elif study_goal == "MINIMIZE": x_max = x_tries[acquisition_fucntion_values.argmin()] #max_acquision_fucntion_value = acquisition_fucntion_values.min() else: # TODO: Throw the error x_max = [] # Example: [3993.864683994805, 44.15441513231316] x_max = np.clip(x_max, bounds[:, 0], bounds[:, 1]) print("Current max acquision function choose: {}".format(x_max)) # Example: {"hidden2": 3993.864683994805, "hidden1": 44.15441513231316} suggested_parameter_values_json = {} index = 0 """ Construct the suggested params according to the result of gaussian process # Example prior result: [0.1, 0.5, 0.3, 0.9] # Example param scope: {"learning_rate": (0.01, 0.5), "hidden1": (40, 400), "optimizer_sgd": (0, 1), "optimizer_ftrl": (0, 1)} for key in bound_dict.keys(): parameter_values_json[key] = x_max[index] index += 1 """ for param in params: if param["type"] == "DOUBLE": suggested_parameter_values_json[ param["parameterName"]] = x_max[index] index += 1 elif param["type"] == "INTEGER": suggested_parameter_values_json[param["parameterName"]] = int( x_max[index]) index += 1 elif param["type"] == "DISCRETE": feasible_points_string = param["feasiblePoints"] feasible_points = [ float(value.strip()) for value in feasible_points_string.split(",") ] # Find the max value of these and get its string current_max = x_max[index] suggested_parameter_value = feasible_points[0] for feasible_point in feasible_points: if x_max[index] > current_max: current_max = x_max[index] suggested_parameter_value = feasible_point index += 1 suggested_parameter_values_json[ param["parameterName"]] = suggested_parameter_value elif param["type"] == "CATEGORICAL": feasible_points_string = param["feasiblePoints"] # Example: ["sgd", "adagrad", "adam", "ftrl"] feasible_points = [ value.strip() for value in feasible_points_string.split(",") ] # Find the max value of these and get its string current_max = x_max[index] suggested_parameter_value = feasible_points[0] for feasible_point in feasible_points: if x_max[index] > current_max: current_max = x_max[index] suggested_parameter_value = feasible_point index += 1 suggested_parameter_values_json[ param["parameterName"]] = suggested_parameter_value return_trial = Trial.create(study.name, "BayesianOptimizationTrial") return_trial.parameter_values = json.dumps( suggested_parameter_values_json) return_trial.save() return [return_trial]
def get_new_suggestions(self, study_id, trials, number=1): # TODO: Only support retuning one trial study = Study.objects.get(id=study_id) completed_trials = Trial.objects.filter(study_id=study_id, status="Completed") study_configuration_json = json.loads(study.study_configuration) random_init_trials = study_configuration_json.get( "randomInitTrials", 3) params = study_configuration_json["params"] # Use random search if it has less dataset if len(completed_trials) < random_init_trials: randomSearchAlgorithm = RandomSearchAlgorithm() return_trials = randomSearchAlgorithm.get_new_suggestions( study_id, trials) return return_trials else: return_trial = Trial.create(study.id, "BayesianOptimizationTrial") acquisition_fucntion_kappa = 5 # Example: {'x': (-4, 4), 'y': (-3, 3)} bound_dict = {} for param in params: if param["type"] == "DOUBLE" or param["type"] == "INTEGER": min_value = param["minValue"] max_value = param["maxValue"] bound_dict[param["parameterName"]] = (min_value, max_value) elif param["type"] == "DISCRETE": feasible_points_string = param["feasiblePoints"] feasible_points = [ float(value.strip()) for value in feasible_points_string.split(",") ] feasible_points.sort() min_value = feasible_points[0] max_value = feasible_points[-1] bound_dict[param["parameterName"]] = (min_value, max_value) elif param["type"] == "CATEGORICAL": feasible_points_string = param["feasiblePoints"] feasible_points = [ value.strip() for value in feasible_points_string.split(",") ] for feasible_point in feasible_points: parameter_name = "{}_{}".format( param["parameterName"], feasible_point) bound_dict[parameter_name] = (0, 1) bounds = [] for key in bound_dict.keys(): bounds.append(bound_dict[key]) bounds = np.asarray(bounds) gp = GaussianProcessRegressor( kernel=Matern(nu=2.5), n_restarts_optimizer=25, ) init_points = [] init_labels = [] """ parametername_type_map = {} for param in params: parametername_type_map[param["parameterName"]] = param["type"] """ for trial in completed_trials: # Example: {"learning_rate": 0.01, "optimizer": "ftrl"} parameter_values_json = json.loads(trial.parameter_values) # Example: [0.01] instance_features = [] instance_label = trial.objective_value for param in params: if param["type"] == "DOUBLE" or param[ "type"] == "INTEGER" or param["type"] == "DISCRETE": instance_feature = parameter_values_json[ param["parameterName"]] instance_features.append(instance_feature) elif param["type"] == "CATEGORICAL": feasible_points_string = param["feasiblePoints"] # Example: ["sgd", "adagrad", "adam", "ftrl"] feasible_points = [ value.strip() for value in feasible_points_string.split(",") ] # Example: "ftrl" parameter_value = parameter_values_json[ param["parameterName"]] for feasible_point in feasible_points: if feasible_point == parameter_value: instance_features.append(1) else: instance_features.append(0) init_points.append(instance_features) init_labels.append(instance_label) #import ipdb;ipdb.set_trace() train_features = np.asarray(init_points) train_labels = np.asarray(init_labels) current_max_label = train_labels.max() gp.fit(train_features, train_labels) # Example: [[-3.66909025, -0.84486644], [-1.93270006, -0.95367483], [1.36095631, 0.61358525], ...], shape is [100000, 2] x_tries = np.random.uniform(bounds[:, 0], bounds[:, 1], size=(100000, bounds.shape[0])) mean, std = gp.predict(x_tries, return_std=True) # Confidence bound criteria acquisition_fucntion_values = mean + acquisition_fucntion_kappa * std x_max = x_tries[acquisition_fucntion_values.argmax()] max_acquision_fucntion_value = acquisition_fucntion_values.max() # Example: [3993.864683994805, 44.15441513231316] x_max = np.clip(x_max, bounds[:, 0], bounds[:, 1]) print("Current max acquision function choose: {}".format(x_max)) # Example: {"hidden2": 3993.864683994805, "hidden1": 44.15441513231316} suggested_parameter_values_json = {} index = 0 """ # Example: [0.1, 0.5, 0.3, 0.9] # Example: {"learning_rate": (0.01, 0.5), "hidden1": (40, 400), "optimizer_sgd": (0, 1), "optimizer_ftrl": (0, 1)} for key in bound_dict.keys(): parameter_values_json[key] = x_max[index] index += 1 """ for param in params: if param["type"] == "DOUBLE" or param["type"] == "DISCRETE": suggested_parameter_values_json[ param["parameterName"]] = x_max[index] index += 1 elif param["type"] == "INTEGER": suggested_parameter_values_json[ param["parameterName"]] = int(round(x_max[index])) index += 1 elif param["type"] == "DISCRETE": feasible_points_string = param["feasiblePoints"] feasible_points = [ float(value.strip()) for value in feasible_points_string.split(",") ] feasible_points.sort() selected_value = self.find_closest_value_in_list( feasible_points, x_max[index]) suggested_parameter_values_json[ param["parameterName"]] = selected_value index += 1 elif param["type"] == "CATEGORICAL": feasible_points_string = param["feasiblePoints"] # Example: ["sgd", "adagrad", "adam", "ftrl"] feasible_points = [ value.strip() for value in feasible_points_string.split(",") ] # 记录这4个值中数最大的,然后取到对应的字符串 current_max = x_max[index] suggested_parameter_value = feasible_points[0] for feasible_point in feasible_points: if x_max[index] > current_max: current_max = x_max[index] suggested_parameter_value = feasible_point index += 1 suggested_parameter_values_json[ param["parameterName"]] = suggested_parameter_value return_trial.parameter_values = json.dumps( suggested_parameter_values_json) return_trial.save() return [return_trial]