def test_stratify_transition_flows__with_source_and_dest_stratified(): """ Ensure transition flows are stratified correctly when both the flow source and dest are stratified. """ model = CompartmentalModel( times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"] ) model.add_infection_frequency_flow("infection", 0.03, "S", "I") model.add_sojourn_flow("recovery", 7, "I", "R") expected_flows = [ InfectionFrequencyFlow( "infection", C("S"), C("I"), 0.03, model._get_infection_frequency_multiplier ), SojournFlow("recovery", C("I"), C("R"), 7), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)]) # Apply stratification strat = Stratification("location", ["urban", "rural"], ["S", "I", "R"]) model.stratify_with(strat) expected_flows = [ InfectionFrequencyFlow( "infection", C("S", {"location": "urban"}), C("I", {"location": "urban"}), 0.03, model._get_infection_frequency_multiplier, ), InfectionFrequencyFlow( "infection", C("S", {"location": "rural"}), C("I", {"location": "rural"}), 0.03, model._get_infection_frequency_multiplier, ), SojournFlow("recovery", C("I", {"location": "urban"}), C("R", {"location": "urban"}), 7), SojournFlow("recovery", C("I", {"location": "rural"}), C("R", {"location": "rural"}), 7), ] assert len(expected_flows) == len(model._flows) assert all([a._is_equal(e) for e, a in zip(expected_flows, model._flows)])
def _get_test_model(timestep=1, times=[0, 150]): comps = ["S", "EE", "LE", "EA", "LA", "R"] infectious_comps = ["LE", "EA", "LA"] model = CompartmentalModel( times=times, compartments=comps, infectious_compartments=infectious_comps, timestep=timestep, ) model.set_initial_population({"S": int(20e6), "LA": 100}) # Add flows model.add_infection_frequency_flow(name="infection", contact_rate=0.03, source="S", dest="EE") model.add_sojourn_flow(name="infect_onset", sojourn_time=7, source="EE", dest="LE") model.add_sojourn_flow(name="incidence", sojourn_time=7, source="LE", dest="EA") model.add_sojourn_flow(name="progress", sojourn_time=7, source="EA", dest="LA") model.add_sojourn_flow(name="recovery", sojourn_time=7, source="LA", dest="R") model.add_death_flow(name="infect_death", death_rate=0.005, source="LA") model.add_transition_flow(name="warning_immunity", fractional_rate=0.01, source="R", dest="S") # Stratify by age age_strat = Stratification("age", AGE_STRATA, comps) age_strat.set_population_split(AGE_SPLIT_PROPORTIONS) age_strat.set_mixing_matrix(AGE_MIXING_MATRIX) age_strat.add_flow_adjustments( "infection", {s: Multiply(v) for s, v in AGE_SUSCEPTIBILITY.items()} ) model.stratify_with(age_strat) # Stratify by clinical status clinical_strat = Stratification("clinical", CLINICAL_STRATA, infectious_comps) clinical_strat.add_infectiousness_adjustments("LE", {**ADJ_BASE, "non_sympt": Overwrite(0.25)}) clinical_strat.add_infectiousness_adjustments("EA", {**ADJ_BASE, "non_sympt": Overwrite(0.25)}) clinical_strat.add_infectiousness_adjustments( "LA", { **ADJ_BASE, "non_sympt": Overwrite(0.25), "sympt_isolate": Overwrite(0.2), "hospital": Overwrite(0.2), "icu": Overwrite(0.2), }, ) clinical_strat.add_flow_adjustments( "infect_onset", { "non_sympt": Multiply(0.26), "icu": Multiply(0.01), "hospital": Multiply(0.04), "sympt_public": Multiply(0.66), "sympt_isolate": Multiply(0.03), }, ) model.stratify_with(clinical_strat) # Request derived outputs. model.request_output_for_flow(name="incidence", flow_name="incidence") model.request_output_for_flow(name="progress", flow_name="progress") for age in AGE_STRATA: for clinical in NOTIFICATION_STRATA: model.request_output_for_flow( name=f"progressXage_{age}Xclinical_{clinical}", flow_name="progress", dest_strata={"age": age, "clinical": clinical}, ) hospital_sources = [] icu_sources = [] for age in AGE_STRATA: icu_sources.append(f"progressXage_{age}Xclinical_icu") hospital_sources += [ f"progressXage_{age}Xclinical_icu", f"progressXage_{age}Xclinical_hospital", ] model.request_aggregate_output( name="new_hospital_admissions", sources=hospital_sources, ) model.request_aggregate_output(name="new_icu_admissions", sources=icu_sources) # Get notifications, which may included people detected in-country as they progress, or imported cases which are detected. notification_sources = [ f"progressXage_{a}Xclinical_{c}" for a in AGE_STRATA for c in NOTIFICATION_STRATA ] model.request_aggregate_output(name="notifications", sources=notification_sources) # Infection deaths. model.request_output_for_flow(name="infection_deaths", flow_name="infect_death") model.request_cumulative_output(name="accum_deaths", source="infection_deaths") # Track hospital occupancy. # We count all ICU and hospital late active compartments and a proportion of early active ICU cases. model.request_output_for_compartments( "_late_active_hospital", compartments=["LA"], strata={"clinical": "hospital"}, save_results=False, ) model.request_output_for_compartments( "icu_occupancy", compartments=["LA"], strata={"clinical": "icu"}, ) model.request_output_for_compartments( "_early_active_icu", compartments=["EA"], strata={"clinical": "icu"}, save_results=False, ) proportion_icu_patients_in_hospital = 0.25 model.request_function_output( name="_early_active_icu_proportion", func=lambda patients: patients * proportion_icu_patients_in_hospital, sources=["_early_active_icu"], save_results=False, ) model.request_aggregate_output( name="hospital_occupancy", sources=[ "_late_active_hospital", "icu_occupancy", "_early_active_icu_proportion", ], ) # Proportion seropositive model.request_output_for_compartments( name="_total_population", compartments=comps, save_results=False ) model.request_output_for_compartments(name="_recovered", compartments=["R"], save_results=False) model.request_function_output( name="proportion_seropositive", sources=["_recovered", "_total_population"], func=lambda recovered, total: recovered / total, ) return model