def __init__(self, cl_context, multipole_expansion_factory, local_expansion_factory, qbx_local_expansion_factory, out_kernels): SumpyExpansionWranglerCodeContainer.__init__(self, cl_context, multipole_expansion_factory, local_expansion_factory, out_kernels) self.qbx_local_expansion_factory = qbx_local_expansion_factory
def test_sumpy_fmm_timing_data_collection(ctx_getter): logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue( ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) nsources = 500 dtype = np.float64 from boxtree.tools import ( make_normal_particle_array as p_normal) knl = LaplaceKernel(2) local_expn_class = VolumeTaylorLocalExpansion mpole_expn_class = VolumeTaylorMultipoleExpansion order = 1 sources = p_normal(queue, nsources, knl.dim, dtype, seed=15) from boxtree import TreeBuilder tb = TreeBuilder(ctx) tree, _ = tb(queue, sources, max_particles_in_box=30, debug=True) from boxtree.traversal import FMMTraversalBuilder tbuild = FMMTraversalBuilder(ctx) trav, _ = tbuild(queue, tree, debug=True) from pyopencl.clrandom import PhiloxGenerator rng = PhiloxGenerator(ctx) weights = rng.uniform(queue, nsources, dtype=np.float64) out_kernels = [knl] from functools import partial from sumpy.fmm import SumpyExpansionWranglerCodeContainer wcc = SumpyExpansionWranglerCodeContainer( ctx, partial(mpole_expn_class, knl), partial(local_expn_class, knl), out_kernels) wrangler = wcc.get_wrangler(queue, tree, dtype, fmm_level_to_order=lambda kernel, kernel_args, tree, lev: order) from boxtree.fmm import drive_fmm timing_data = {} pot, = drive_fmm(trav, wrangler, weights, timing_data=timing_data) print(timing_data) assert timing_data
def test_sumpy_fmm_timing_data_collection(ctx_factory): logging.basicConfig(level=logging.INFO) ctx = ctx_factory() queue = cl.CommandQueue( ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) nsources = 500 dtype = np.float64 from boxtree.tools import ( make_normal_particle_array as p_normal) knl = LaplaceKernel(2) local_expn_class = VolumeTaylorLocalExpansion mpole_expn_class = VolumeTaylorMultipoleExpansion order = 1 sources = p_normal(queue, nsources, knl.dim, dtype, seed=15) from boxtree import TreeBuilder tb = TreeBuilder(ctx) tree, _ = tb(queue, sources, max_particles_in_box=30, debug=True) from boxtree.traversal import FMMTraversalBuilder tbuild = FMMTraversalBuilder(ctx) trav, _ = tbuild(queue, tree, debug=True) from pyopencl.clrandom import PhiloxGenerator rng = PhiloxGenerator(ctx) weights = rng.uniform(queue, nsources, dtype=np.float64) out_kernels = [knl] from functools import partial from sumpy.fmm import SumpyExpansionWranglerCodeContainer wcc = SumpyExpansionWranglerCodeContainer( ctx, partial(mpole_expn_class, knl), partial(local_expn_class, knl), out_kernels) wrangler = wcc.get_wrangler(queue, tree, dtype, fmm_level_to_order=lambda kernel, kernel_args, tree, lev: order) from boxtree.fmm import drive_fmm timing_data = {} pot, = drive_fmm(trav, wrangler, (weights,), timing_data=timing_data) print(timing_data) assert timing_data
def __init__(self, cl_context, multipole_expansion, local_expansion, qbx_local_expansion, out_kernels): SumpyExpansionWranglerCodeContainer.__init__(self, cl_context, multipole_expansion, local_expansion, out_kernels) self.qbx_local_expansion = qbx_local_expansion from pytential.qbx.interactions import ( P2QBXLFromCSR, M2QBXL, L2QBXL, QBXL2P) self.p2qbxl = P2QBXLFromCSR(cl_context, qbx_local_expansion) self.m2qbxl = M2QBXL(cl_context, multipole_expansion, qbx_local_expansion) self.l2qbxl = L2QBXL(cl_context, local_expansion, qbx_local_expansion) self.qbxl2p = QBXL2P(cl_context, qbx_local_expansion, out_kernels)
def expansion_wrangler_code_container(self, fmm_kernel, out_kernels): mpole_expn_class = \ self.expansion_factory.get_multipole_expansion_class(fmm_kernel) local_expn_class = \ self.expansion_factory.get_local_expansion_class(fmm_kernel) from functools import partial fmm_mpole_factory = partial(mpole_expn_class, fmm_kernel) fmm_local_factory = partial(local_expn_class, fmm_kernel) from sumpy.fmm import SumpyExpansionWranglerCodeContainer return SumpyExpansionWranglerCodeContainer(self.cl_context, fmm_mpole_factory, fmm_local_factory, out_kernels)
def test_sumpy_fmm_exclude_self(ctx_getter): logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue(ctx) nsources = 500 dtype = np.float64 from boxtree.tools import ( make_normal_particle_array as p_normal) knl = LaplaceKernel(2) local_expn_class = VolumeTaylorLocalExpansion mpole_expn_class = VolumeTaylorMultipoleExpansion order = 10 sources = p_normal(queue, nsources, knl.dim, dtype, seed=15) from boxtree import TreeBuilder tb = TreeBuilder(ctx) tree, _ = tb(queue, sources, max_particles_in_box=30, debug=True) from boxtree.traversal import FMMTraversalBuilder tbuild = FMMTraversalBuilder(ctx) trav, _ = tbuild(queue, tree, debug=True) from pyopencl.clrandom import PhiloxGenerator rng = PhiloxGenerator(ctx) weights = rng.uniform(queue, nsources, dtype=np.float64) target_to_source = np.arange(tree.ntargets, dtype=np.int32) self_extra_kwargs = {"target_to_source": target_to_source} out_kernels = [knl] from functools import partial from sumpy.fmm import SumpyExpansionWranglerCodeContainer wcc = SumpyExpansionWranglerCodeContainer( ctx, partial(mpole_expn_class, knl), partial(local_expn_class, knl), out_kernels, exclude_self=True) wrangler = wcc.get_wrangler(queue, tree, dtype, fmm_level_to_order=lambda kernel, kernel_args, tree, lev: order, self_extra_kwargs=self_extra_kwargs) from boxtree.fmm import drive_fmm pot, = drive_fmm(trav, wrangler, weights) from sumpy import P2P p2p = P2P(ctx, out_kernels, exclude_self=True) evt, (ref_pot,) = p2p(queue, sources, sources, (weights,), **self_extra_kwargs) pot = pot.get() ref_pot = ref_pot.get() rel_err = la.norm(pot - ref_pot) / la.norm(ref_pot) logger.info("order %d -> relative l2 error: %g" % (order, rel_err)) assert np.isclose(rel_err, 0, atol=1e-7)
def test_sumpy_fmm(ctx_getter, knl, local_expn_class, mpole_expn_class): logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue(ctx) nsources = 1000 ntargets = 300 dtype = np.float64 from boxtree.tools import ( make_normal_particle_array as p_normal) sources = p_normal(queue, nsources, knl.dim, dtype, seed=15) if 1: offset = np.zeros(knl.dim) offset[0] = 0.1 targets = ( p_normal(queue, ntargets, knl.dim, dtype, seed=18) + offset) del offset else: from sumpy.visualization import FieldPlotter fp = FieldPlotter(np.array([0.5, 0]), extent=3, npoints=200) from pytools.obj_array import make_obj_array targets = make_obj_array( [fp.points[i] for i in range(knl.dim)]) from boxtree import TreeBuilder tb = TreeBuilder(ctx) tree, _ = tb(queue, sources, targets=targets, max_particles_in_box=30, debug=True) from boxtree.traversal import FMMTraversalBuilder tbuild = FMMTraversalBuilder(ctx) trav, _ = tbuild(queue, tree, debug=True) # {{{ plot tree if 0: host_tree = tree.get() host_trav = trav.get() if 1: print("src_box", host_tree.find_box_nr_for_source(403)) print("tgt_box", host_tree.find_box_nr_for_target(28)) print(list(host_trav.target_or_target_parent_boxes).index(37)) print(host_trav.get_box_list("sep_bigger", 22)) from boxtree.visualization import TreePlotter plotter = TreePlotter(host_tree) plotter.draw_tree(fill=False, edgecolor="black", zorder=10) plotter.set_bounding_box() plotter.draw_box_numbers() import matplotlib.pyplot as pt pt.show() # }}} from pyopencl.clrandom import PhiloxGenerator rng = PhiloxGenerator(ctx, seed=44) weights = rng.uniform(queue, nsources, dtype=np.float64) logger.info("computing direct (reference) result") from pytools.convergence import PConvergenceVerifier pconv_verifier = PConvergenceVerifier() extra_kwargs = {} dtype = np.float64 order_values = [1, 2, 3] if isinstance(knl, HelmholtzKernel): extra_kwargs["k"] = 0.05 dtype = np.complex128 if knl.dim == 3: order_values = [1, 2] elif knl.dim == 2 and issubclass(local_expn_class, H2DLocalExpansion): order_values = [10, 12] elif isinstance(knl, YukawaKernel): extra_kwargs["lam"] = 2 dtype = np.complex128 if knl.dim == 3: order_values = [1, 2] elif knl.dim == 2 and issubclass(local_expn_class, Y2DLocalExpansion): order_values = [10, 12] from functools import partial for order in order_values: out_kernels = [knl] from sumpy.fmm import SumpyExpansionWranglerCodeContainer wcc = SumpyExpansionWranglerCodeContainer( ctx, partial(mpole_expn_class, knl), partial(local_expn_class, knl), out_kernels) wrangler = wcc.get_wrangler(queue, tree, dtype, fmm_level_to_order=lambda kernel, kernel_args, tree, lev: order, kernel_extra_kwargs=extra_kwargs) from boxtree.fmm import drive_fmm pot, = drive_fmm(trav, wrangler, weights) from sumpy import P2P p2p = P2P(ctx, out_kernels, exclude_self=False) evt, (ref_pot,) = p2p(queue, targets, sources, (weights,), **extra_kwargs) pot = pot.get() ref_pot = ref_pot.get() rel_err = la.norm(pot - ref_pot, np.inf) / la.norm(ref_pot, np.inf) logger.info("order %d -> relative l2 error: %g" % (order, rel_err)) pconv_verifier.add_data_point(order, rel_err) print(pconv_verifier) pconv_verifier()
def test_sumpy_fmm(ctx_getter, knl, local_expn_class, mpole_expn_class): logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue(ctx) nsources = 1000 ntargets = 300 dtype = np.float64 from boxtree.tools import (make_normal_particle_array as p_normal) sources = p_normal(queue, nsources, knl.dim, dtype, seed=15) if 1: offset = np.zeros(knl.dim) offset[0] = 0.1 targets = (p_normal(queue, ntargets, knl.dim, dtype, seed=18) + offset) del offset else: from sumpy.visualization import FieldPlotter fp = FieldPlotter(np.array([0.5, 0]), extent=3, npoints=200) from pytools.obj_array import make_obj_array targets = make_obj_array([fp.points[i] for i in range(knl.dim)]) from boxtree import TreeBuilder tb = TreeBuilder(ctx) tree, _ = tb(queue, sources, targets=targets, max_particles_in_box=30, debug=True) from boxtree.traversal import FMMTraversalBuilder tbuild = FMMTraversalBuilder(ctx) trav, _ = tbuild(queue, tree, debug=True) # {{{ plot tree if 0: host_tree = tree.get() host_trav = trav.get() if 1: print("src_box", host_tree.find_box_nr_for_source(403)) print("tgt_box", host_tree.find_box_nr_for_target(28)) print(list(host_trav.target_or_target_parent_boxes).index(37)) print(host_trav.get_box_list("sep_bigger", 22)) from boxtree.visualization import TreePlotter plotter = TreePlotter(host_tree) plotter.draw_tree(fill=False, edgecolor="black", zorder=10) plotter.set_bounding_box() plotter.draw_box_numbers() import matplotlib.pyplot as pt pt.show() # }}} from pyopencl.clrandom import PhiloxGenerator rng = PhiloxGenerator(ctx, seed=44) weights = rng.uniform(queue, nsources, dtype=np.float64) logger.info("computing direct (reference) result") from pytools.convergence import PConvergenceVerifier pconv_verifier = PConvergenceVerifier() extra_kwargs = {} dtype = np.float64 order_values = [1, 2, 3] if isinstance(knl, HelmholtzKernel): extra_kwargs["k"] = 0.05 dtype = np.complex128 if knl.dim == 3: order_values = [1, 2] elif knl.dim == 2 and issubclass(local_expn_class, H2DLocalExpansion): order_values = [10, 12] elif isinstance(knl, YukawaKernel): extra_kwargs["lam"] = 2 dtype = np.complex128 if knl.dim == 3: order_values = [1, 2] elif knl.dim == 2 and issubclass(local_expn_class, Y2DLocalExpansion): order_values = [10, 12] from functools import partial for order in order_values: out_kernels = [knl] from sumpy.fmm import SumpyExpansionWranglerCodeContainer wcc = SumpyExpansionWranglerCodeContainer( ctx, partial(mpole_expn_class, knl), partial(local_expn_class, knl), out_kernels) wrangler = wcc.get_wrangler( queue, tree, dtype, fmm_level_to_order=lambda kernel, kernel_args, tree, lev: order, kernel_extra_kwargs=extra_kwargs) from boxtree.fmm import drive_fmm pot, = drive_fmm(trav, wrangler, weights) from sumpy import P2P p2p = P2P(ctx, out_kernels, exclude_self=False) evt, (ref_pot, ) = p2p(queue, targets, sources, (weights, ), **extra_kwargs) pot = pot.get() ref_pot = ref_pot.get() rel_err = la.norm(pot - ref_pot, np.inf) / la.norm(ref_pot, np.inf) logger.info("order %d -> relative l2 error: %g" % (order, rel_err)) pconv_verifier.add_data_point(order, rel_err) print(pconv_verifier) pconv_verifier()
def test_sumpy_fmm_exclude_self(ctx_getter): logging.basicConfig(level=logging.INFO) ctx = ctx_getter() queue = cl.CommandQueue(ctx) nsources = 500 dtype = np.float64 from boxtree.tools import (make_normal_particle_array as p_normal) knl = LaplaceKernel(2) local_expn_class = VolumeTaylorLocalExpansion mpole_expn_class = VolumeTaylorMultipoleExpansion order = 10 sources = p_normal(queue, nsources, knl.dim, dtype, seed=15) from boxtree import TreeBuilder tb = TreeBuilder(ctx) tree, _ = tb(queue, sources, max_particles_in_box=30, debug=True) from boxtree.traversal import FMMTraversalBuilder tbuild = FMMTraversalBuilder(ctx) trav, _ = tbuild(queue, tree, debug=True) from pyopencl.clrandom import PhiloxGenerator rng = PhiloxGenerator(ctx) weights = rng.uniform(queue, nsources, dtype=np.float64) target_to_source = np.arange(tree.ntargets, dtype=np.int32) self_extra_kwargs = {"target_to_source": target_to_source} out_kernels = [knl] from functools import partial from sumpy.fmm import SumpyExpansionWranglerCodeContainer wcc = SumpyExpansionWranglerCodeContainer(ctx, partial(mpole_expn_class, knl), partial(local_expn_class, knl), out_kernels, exclude_self=True) wrangler = wcc.get_wrangler( queue, tree, dtype, fmm_level_to_order=lambda kernel, kernel_args, tree, lev: order, self_extra_kwargs=self_extra_kwargs) from boxtree.fmm import drive_fmm pot, = drive_fmm(trav, wrangler, weights) from sumpy import P2P p2p = P2P(ctx, out_kernels, exclude_self=True) evt, (ref_pot, ) = p2p(queue, sources, sources, (weights, ), **self_extra_kwargs) pot = pot.get() ref_pot = ref_pot.get() rel_err = la.norm(pot - ref_pot) / la.norm(ref_pot) logger.info("order %d -> relative l2 error: %g" % (order, rel_err)) assert np.isclose(rel_err, 0, atol=1e-7)