def p2m(self, tgt_order): return P2EFromSingleBox(self.cl_context, self.multipole_expansion(tgt_order))
def get_p2l(self, order): from sumpy import P2EFromSingleBox return P2EFromSingleBox( self.cl_context, self.local_expn_class(self.no_target_deriv_kernel, order), [self.kernel])
def test_translations(ctx_factory, knl, local_expn_class, mpole_expn_class): logging.basicConfig(level=logging.INFO) from sympy.core.cache import clear_cache clear_cache() ctx = ctx_factory() queue = cl.CommandQueue(ctx) np.random.seed(17) res = 20 nsources = 15 out_kernels = [knl] extra_kwargs = {} if isinstance(knl, HelmholtzKernel): extra_kwargs["k"] = 0.05 if isinstance(knl, StokesletKernel): extra_kwargs["mu"] = 0.05 # Just to make sure things also work away from the origin origin = np.array([2, 1, 0][:knl.dim], np.float64) sources = (0.7 * (-0.5 + np.random.rand(knl.dim, nsources).astype(np.float64)) + origin[:, np.newaxis]) strengths = np.ones(nsources, dtype=np.float64) * (1 / nsources) pconv_verifier_p2m2p = PConvergenceVerifier() pconv_verifier_p2m2m2p = PConvergenceVerifier() pconv_verifier_p2m2m2l2p = PConvergenceVerifier() pconv_verifier_full = PConvergenceVerifier() from sumpy.visualization import FieldPlotter eval_offset = np.array([5.5, 0.0, 0][:knl.dim]) centers = ( np.array( [ # box 0: particles, first mpole here [0, 0, 0][:knl.dim], # box 1: second mpole here np.array([-0.2, 0.1, 0][:knl.dim], np.float64), # box 2: first local here eval_offset + np.array([0.3, -0.2, 0][:knl.dim], np.float64), # box 3: second local and eval here eval_offset ], dtype=np.float64) + origin).T.copy() del eval_offset from sumpy.expansion import VolumeTaylorExpansionBase if isinstance(knl, HelmholtzKernel) and \ issubclass(local_expn_class, VolumeTaylorExpansionBase): # FIXME: Embarrassing--but we run out of memory for higher orders. orders = [2, 3] else: orders = [2, 3, 4] nboxes = centers.shape[-1] def eval_at(e2p, source_box_nr, rscale): e2p_target_boxes = np.array([source_box_nr], dtype=np.int32) # These are indexed by global box numbers. e2p_box_target_starts = np.array([0, 0, 0, 0], dtype=np.int32) e2p_box_target_counts_nonchild = np.array([0, 0, 0, 0], dtype=np.int32) e2p_box_target_counts_nonchild[source_box_nr] = ntargets evt, (pot, ) = e2p( queue, src_expansions=mpoles, src_base_ibox=0, target_boxes=e2p_target_boxes, box_target_starts=e2p_box_target_starts, box_target_counts_nonchild=e2p_box_target_counts_nonchild, centers=centers, targets=targets, rscale=rscale, out_host=True, **extra_kwargs) return pot for order in orders: m_expn = mpole_expn_class(knl, order=order) l_expn = local_expn_class(knl, order=order) from sumpy import P2EFromSingleBox, E2PFromSingleBox, P2P, E2EFromCSR p2m = P2EFromSingleBox(ctx, m_expn) m2m = E2EFromCSR(ctx, m_expn, m_expn) m2p = E2PFromSingleBox(ctx, m_expn, out_kernels) m2l = E2EFromCSR(ctx, m_expn, l_expn) l2l = E2EFromCSR(ctx, l_expn, l_expn) l2p = E2PFromSingleBox(ctx, l_expn, out_kernels) p2p = P2P(ctx, out_kernels, exclude_self=False) fp = FieldPlotter(centers[:, -1], extent=0.3, npoints=res) targets = fp.points # {{{ compute (direct) reference solution evt, (pot_direct, ) = p2p(queue, targets, sources, (strengths, ), out_host=True, **extra_kwargs) # }}} m1_rscale = 0.5 m2_rscale = 0.25 l1_rscale = 0.5 l2_rscale = 0.25 # {{{ apply P2M p2m_source_boxes = np.array([0], dtype=np.int32) # These are indexed by global box numbers. p2m_box_source_starts = np.array([0, 0, 0, 0], dtype=np.int32) p2m_box_source_counts_nonchild = np.array([nsources, 0, 0, 0], dtype=np.int32) evt, (mpoles, ) = p2m( queue, source_boxes=p2m_source_boxes, box_source_starts=p2m_box_source_starts, box_source_counts_nonchild=p2m_box_source_counts_nonchild, centers=centers, sources=sources, strengths=(strengths, ), nboxes=nboxes, rscale=m1_rscale, tgt_base_ibox=0, #flags="print_hl_wrapper", out_host=True, **extra_kwargs) # }}} ntargets = targets.shape[-1] pot = eval_at(m2p, 0, m1_rscale) err = la.norm((pot - pot_direct) / res**2) err = err / (la.norm(pot_direct) / res**2) pconv_verifier_p2m2p.add_data_point(order, err) # {{{ apply M2M m2m_target_boxes = np.array([1], dtype=np.int32) m2m_src_box_starts = np.array([0, 1], dtype=np.int32) m2m_src_box_lists = np.array([0], dtype=np.int32) evt, (mpoles, ) = m2m( queue, src_expansions=mpoles, src_base_ibox=0, tgt_base_ibox=0, ntgt_level_boxes=mpoles.shape[0], target_boxes=m2m_target_boxes, src_box_starts=m2m_src_box_starts, src_box_lists=m2m_src_box_lists, centers=centers, src_rscale=m1_rscale, tgt_rscale=m2_rscale, #flags="print_hl_cl", out_host=True, **extra_kwargs) # }}} pot = eval_at(m2p, 1, m2_rscale) err = la.norm((pot - pot_direct) / res**2) err = err / (la.norm(pot_direct) / res**2) pconv_verifier_p2m2m2p.add_data_point(order, err) # {{{ apply M2L m2l_target_boxes = np.array([2], dtype=np.int32) m2l_src_box_starts = np.array([0, 1], dtype=np.int32) m2l_src_box_lists = np.array([1], dtype=np.int32) evt, (mpoles, ) = m2l( queue, src_expansions=mpoles, src_base_ibox=0, tgt_base_ibox=0, ntgt_level_boxes=mpoles.shape[0], target_boxes=m2l_target_boxes, src_box_starts=m2l_src_box_starts, src_box_lists=m2l_src_box_lists, centers=centers, src_rscale=m2_rscale, tgt_rscale=l1_rscale, #flags="print_hl_cl", out_host=True, **extra_kwargs) # }}} pot = eval_at(l2p, 2, l1_rscale) err = la.norm((pot - pot_direct) / res**2) err = err / (la.norm(pot_direct) / res**2) pconv_verifier_p2m2m2l2p.add_data_point(order, err) # {{{ apply L2L l2l_target_boxes = np.array([3], dtype=np.int32) l2l_src_box_starts = np.array([0, 1], dtype=np.int32) l2l_src_box_lists = np.array([2], dtype=np.int32) evt, (mpoles, ) = l2l( queue, src_expansions=mpoles, src_base_ibox=0, tgt_base_ibox=0, ntgt_level_boxes=mpoles.shape[0], target_boxes=l2l_target_boxes, src_box_starts=l2l_src_box_starts, src_box_lists=l2l_src_box_lists, centers=centers, src_rscale=l1_rscale, tgt_rscale=l2_rscale, #flags="print_hl_wrapper", out_host=True, **extra_kwargs) # }}} pot = eval_at(l2p, 3, l2_rscale) err = la.norm((pot - pot_direct) / res**2) err = err / (la.norm(pot_direct) / res**2) pconv_verifier_full.add_data_point(order, err) for name, verifier in [ ("p2m2p", pconv_verifier_p2m2p), ("p2m2m2p", pconv_verifier_p2m2m2p), ("p2m2m2l2p", pconv_verifier_p2m2m2l2p), ("full", pconv_verifier_full), ]: print(30 * "-") print(name) print(30 * "-") print(verifier) print(30 * "-") verifier()
def test_p2e2p(ctx_factory, base_knl, expn_class, order, with_source_derivative): #logging.basicConfig(level=logging.INFO) from sympy.core.cache import clear_cache clear_cache() ctx = ctx_factory() queue = cl.CommandQueue(ctx) np.random.seed(17) res = 100 nsources = 100 extra_kwargs = {} if isinstance(base_knl, HelmholtzKernel): if base_knl.allow_evanescent: extra_kwargs["k"] = 0.2 * (0.707 + 0.707j) else: extra_kwargs["k"] = 0.2 if isinstance(base_knl, StokesletKernel): extra_kwargs["mu"] = 0.2 if with_source_derivative: knl = DirectionalSourceDerivative(base_knl, "dir_vec") else: knl = base_knl out_kernels = [ knl, AxisTargetDerivative(0, knl), ] expn = expn_class(knl, order=order) from sumpy import P2EFromSingleBox, E2PFromSingleBox, P2P p2e = P2EFromSingleBox(ctx, expn, kernels=[knl]) e2p = E2PFromSingleBox(ctx, expn, kernels=out_kernels) p2p = P2P(ctx, out_kernels, exclude_self=False) from pytools.convergence import EOCRecorder eoc_rec_pot = EOCRecorder() eoc_rec_grad_x = EOCRecorder() from sumpy.expansion.local import LocalExpansionBase if issubclass(expn_class, LocalExpansionBase): h_values = [1 / 5, 1 / 7, 1 / 20] else: h_values = [1 / 2, 1 / 3, 1 / 5] center = np.array([2, 1, 0][:knl.dim], np.float64) sources = (0.7 * (-0.5 + np.random.rand(knl.dim, nsources).astype(np.float64)) + center[:, np.newaxis]) strengths = np.ones(nsources, dtype=np.float64) * (1 / nsources) source_boxes = np.array([0], dtype=np.int32) box_source_starts = np.array([0], dtype=np.int32) box_source_counts_nonchild = np.array([nsources], dtype=np.int32) extra_source_kwargs = extra_kwargs.copy() if isinstance(knl, DirectionalSourceDerivative): alpha = np.linspace(0, 2 * np.pi, nsources, np.float64) dir_vec = np.vstack([np.cos(alpha), np.sin(alpha)]) extra_source_kwargs["dir_vec"] = dir_vec from sumpy.visualization import FieldPlotter for h in h_values: if issubclass(expn_class, LocalExpansionBase): loc_center = np.array([5.5, 0.0, 0.0][:knl.dim]) + center centers = np.array(loc_center, dtype=np.float64).reshape(knl.dim, 1) fp = FieldPlotter(loc_center, extent=h, npoints=res) else: eval_center = np.array([1 / h, 0.0, 0.0][:knl.dim]) + center fp = FieldPlotter(eval_center, extent=0.1, npoints=res) centers = (np.array([0.0, 0.0, 0.0][:knl.dim], dtype=np.float64).reshape(knl.dim, 1) + center[:, np.newaxis]) targets = fp.points rscale = 0.5 # pick something non-1 # {{{ apply p2e evt, (mpoles, ) = p2e( queue, source_boxes=source_boxes, box_source_starts=box_source_starts, box_source_counts_nonchild=box_source_counts_nonchild, centers=centers, sources=sources, strengths=(strengths, ), nboxes=1, tgt_base_ibox=0, rscale=rscale, #flags="print_hl_cl", out_host=True, **extra_source_kwargs) # }}} # {{{ apply e2p ntargets = targets.shape[-1] box_target_starts = np.array([0], dtype=np.int32) box_target_counts_nonchild = np.array([ntargets], dtype=np.int32) evt, ( pot, grad_x, ) = e2p( queue, src_expansions=mpoles, src_base_ibox=0, target_boxes=source_boxes, box_target_starts=box_target_starts, box_target_counts_nonchild=box_target_counts_nonchild, centers=centers, targets=targets, rscale=rscale, #flags="print_hl_cl", out_host=True, **extra_kwargs) # }}} # {{{ compute (direct) reference solution evt, ( pot_direct, grad_x_direct, ) = p2p(queue, targets, sources, (strengths, ), out_host=True, **extra_source_kwargs) err_pot = la.norm((pot - pot_direct) / res**2) err_grad_x = la.norm((grad_x - grad_x_direct) / res**2) if 1: err_pot = err_pot / la.norm((pot_direct) / res**2) err_grad_x = err_grad_x / la.norm((grad_x_direct) / res**2) if 0: import matplotlib.pyplot as pt from matplotlib.colors import Normalize pt.subplot(131) im = fp.show_scalar_in_matplotlib(pot.real) im.set_norm(Normalize(vmin=-0.1, vmax=0.1)) pt.subplot(132) im = fp.show_scalar_in_matplotlib(pot_direct.real) im.set_norm(Normalize(vmin=-0.1, vmax=0.1)) pt.colorbar() pt.subplot(133) im = fp.show_scalar_in_matplotlib( np.log10(1e-15 + np.abs(pot - pot_direct))) im.set_norm(Normalize(vmin=-6, vmax=1)) pt.colorbar() pt.show() # }}} eoc_rec_pot.add_data_point(h, err_pot) eoc_rec_grad_x.add_data_point(h, err_grad_x) print(expn_class, knl, order) print("POTENTIAL:") print(eoc_rec_pot) print("X TARGET DERIVATIVE:") print(eoc_rec_grad_x) tgt_order = order + 1 if issubclass(expn_class, LocalExpansionBase): tgt_order_grad = tgt_order - 1 slack = 0.7 grad_slack = 0.5 else: tgt_order_grad = tgt_order + 1 slack = 0.5 grad_slack = 1 if order <= 2: slack += 1 grad_slack += 1 if isinstance(knl, DirectionalSourceDerivative): slack += 1 grad_slack += 2 if isinstance(base_knl, DirectionalSourceDerivative): slack += 1 grad_slack += 2 if isinstance(base_knl, HelmholtzKernel): if base_knl.allow_evanescent: slack += 0.5 grad_slack += 0.5 if issubclass(expn_class, VolumeTaylorMultipoleExpansionBase): slack += 0.3 grad_slack += 0.3 assert eoc_rec_pot.order_estimate() > tgt_order - slack assert eoc_rec_grad_x.order_estimate() > tgt_order_grad - grad_slack
def test_p2e_multiple(ctx_factory, base_knl, expn_class): from sympy.core.cache import clear_cache clear_cache() order = 4 ctx = ctx_factory() queue = cl.CommandQueue(ctx) np.random.seed(17) nsources = 100 extra_kwargs = {} if isinstance(base_knl, HelmholtzKernel): if base_knl.allow_evanescent: extra_kwargs["k"] = 0.2 * (0.707 + 0.707j) else: extra_kwargs["k"] = 0.2 if isinstance(base_knl, StokesletKernel): extra_kwargs["mu"] = 0.2 in_kernels = [ DirectionalSourceDerivative(base_knl, "dir_vec"), base_knl, ] knl = base_knl expn = expn_class(knl, order=order) from sumpy import P2EFromSingleBox center = np.array([2, 1, 0][:knl.dim], np.float64) sources = (0.7 * (-0.5 + np.random.rand(knl.dim, nsources).astype(np.float64)) + center[:, np.newaxis]) strengths = [ np.ones(nsources, dtype=np.float64) * (1 / nsources), np.ones(nsources, dtype=np.float64) * (2 / nsources) ] source_boxes = np.array([0], dtype=np.int32) box_source_starts = np.array([0], dtype=np.int32) box_source_counts_nonchild = np.array([nsources], dtype=np.int32) alpha = np.linspace(0, 2 * np.pi, nsources, np.float64) dir_vec = np.vstack([np.cos(alpha), np.sin(alpha)]) from sumpy.expansion.local import LocalExpansionBase if issubclass(expn_class, LocalExpansionBase): loc_center = np.array([5.5, 0.0, 0.0][:knl.dim]) + center centers = np.array(loc_center, dtype=np.float64).reshape(knl.dim, 1) else: centers = (np.array([0.0, 0.0, 0.0][:knl.dim], dtype=np.float64).reshape(knl.dim, 1) + center[:, np.newaxis]) rscale = 0.5 # pick something non-1 # apply p2e at the same time p2e = P2EFromSingleBox(ctx, expn, kernels=in_kernels, strength_usage=[0, 1]) evt, (mpoles, ) = p2e( queue, source_boxes=source_boxes, box_source_starts=box_source_starts, box_source_counts_nonchild=box_source_counts_nonchild, centers=centers, sources=sources, strengths=strengths, nboxes=1, tgt_base_ibox=0, rscale=rscale, #flags="print_hl_cl", out_host=True, dir_vec=dir_vec, **extra_kwargs) actual_result = mpoles # apply p2e separately expected_result = np.zeros_like(actual_result) for i, in_kernel in enumerate(in_kernels): extra_source_kwargs = extra_kwargs.copy() if isinstance(in_kernel, DirectionalSourceDerivative): extra_source_kwargs["dir_vec"] = dir_vec p2e = P2EFromSingleBox(ctx, expn, kernels=[in_kernel], strength_usage=[i]) evt, (mpoles, ) = p2e( queue, source_boxes=source_boxes, box_source_starts=box_source_starts, box_source_counts_nonchild=box_source_counts_nonchild, centers=centers, sources=sources, strengths=strengths, nboxes=1, tgt_base_ibox=0, rscale=rscale, #flags="print_hl_cl", out_host=True, **extra_source_kwargs) expected_result += mpoles norm = la.norm(actual_result - expected_result) / la.norm(expected_result) assert norm < 1e-12
def get_p2m(self, order): from sumpy import P2EFromSingleBox return P2EFromSingleBox(self.cl_context, self.mpole_expn_class( self.no_target_deriv_kernel, order), kernels=(self.kernel, ))