示例#1
0
def test_remove_lytaf_events_2():
    """
    Test _remove_lytaf_events() with no user artifacts found.
    """
    # Run _remove_lytaf_events
    with pytest.warns(UserWarning,
                      match='None of user supplied artifacts were found.'):
        time_test, channels_test, artifacts_status_test = \
            lyra._remove_lytaf_events(
                TIME, channels=CHANNELS, artifacts="Offpoint",
                return_artifacts=True, lytaf_path=TEST_DATA_PATH,
                force_use_local_lytaf=True)
    # Generated expected result
    time_expected = TIME
    channels_expected = CHANNELS
    artifacts_status_expected = {
        "lytaf": LYTAF_TEST,
        "removed": EMPTY_LYTAF,
        "not_removed": LYTAF_TEST,
        "not_found": ["Offpoint"]
    }
    # Assert test values are same as expected
    assert np.all(time_test == time_expected)
    assert (channels_test[0]).all() == (channels_expected[0]).all()
    assert (channels_test[1]).all() == (channels_expected[1]).all()
    assert artifacts_status_test.keys() == artifacts_status_expected.keys()
    np.testing.assert_array_equal(artifacts_status_test["lytaf"],
                                  artifacts_status_expected["lytaf"])
    np.testing.assert_array_equal(artifacts_status_test["removed"],
                                  artifacts_status_expected["removed"])
    np.testing.assert_array_equal(artifacts_status_test["not_removed"],
                                  artifacts_status_expected["not_removed"])
    assert artifacts_status_test["not_found"] == \
        artifacts_status_expected["not_found"]

    # Test correct values are returned when return_artifacts kwarg not
    # supplied.
    # Case 1: channels kwarg is True
    # Run _remove_lytaf_events
    with pytest.warns(UserWarning,
                      match='None of user supplied artifacts were found.'):
        time_test, channels_test = lyra._remove_lytaf_events(
            TIME,
            channels=CHANNELS,
            artifacts=["Offpoint"],
            lytaf_path=TEST_DATA_PATH,
            force_use_local_lytaf=True)
    assert np.all(time_test == time_expected)
    assert (channels_test[0]).all() == (channels_expected[0]).all()
    assert (channels_test[1]).all() == (channels_expected[1]).all()
    # Case 2: channels kwarg is False
    # Run _remove_lytaf_events
    with pytest.warns(UserWarning,
                      match='None of user supplied artifacts were found.'):
        time_test = lyra._remove_lytaf_events(TIME,
                                              artifacts=["Offpoint"],
                                              lytaf_path=TEST_DATA_PATH,
                                              force_use_local_lytaf=True)
    assert np.all(time_test == time_expected)
示例#2
0
def test_remove_lytaf_events_1():
    """
    Test _remove_lytaf_events() with some artifacts found and others not.
    """
    # Run _remove_lytaf_events
    time_test, channels_test, artifacts_status_test = \
        lyra._remove_lytaf_events(
            TIME, channels=CHANNELS, artifacts=["LAR", "Offpoint"],
            return_artifacts=True, lytaf_path=TEST_DATA_PATH,
            force_use_local_lytaf=True)
    # Generated expected result
    bad_indices = np.logical_and(TIME >= LYTAF_TEST["begin_time"][0],
                                 TIME <= LYTAF_TEST["end_time"][0])
    bad_indices = np.arange(len(TIME))[bad_indices]
    time_expected = np.delete(TIME, bad_indices)
    channels_expected = [
        np.delete(CHANNELS[0], bad_indices),
        np.delete(CHANNELS[1], bad_indices)
    ]
    artifacts_status_expected = {
        "lytaf": LYTAF_TEST,
        "removed": LYTAF_TEST[0],
        "not_removed": LYTAF_TEST[1],
        "not_found": ["Offpoint"]
    }
    # Assert test values are same as expected
    assert time_test.all() == time_expected.all()
    assert (channels_test[0]).all() == (channels_expected[0]).all()
    assert (channels_test[1]).all() == (channels_expected[1]).all()
    assert artifacts_status_test.keys() == artifacts_status_expected.keys()
    np.testing.assert_array_equal(artifacts_status_test["lytaf"],
                                  artifacts_status_expected["lytaf"])
    np.testing.assert_array_equal(artifacts_status_test["removed"],
                                  artifacts_status_expected["removed"])
    np.testing.assert_array_equal(artifacts_status_test["not_removed"],
                                  artifacts_status_expected["not_removed"])
    assert artifacts_status_test["not_found"] == \
        artifacts_status_expected["not_found"]

    # Test that correct values are returned when channels kwarg not
    # supplied.
    # Run _remove_lytaf_events
    time_test, artifacts_status_test = \
        lyra._remove_lytaf_events(
            TIME, artifacts=["LAR", "Offpoint"],
            return_artifacts=True, lytaf_path=TEST_DATA_PATH,
            force_use_local_lytaf=True)
    # Assert test values are same as expected
    assert time_test.all() == time_expected.all()
    assert artifacts_status_test.keys() == artifacts_status_expected.keys()
    np.testing.assert_array_equal(artifacts_status_test["lytaf"],
                                  artifacts_status_expected["lytaf"])
    np.testing.assert_array_equal(artifacts_status_test["removed"],
                                  artifacts_status_expected["removed"])
    np.testing.assert_array_equal(artifacts_status_test["not_removed"],
                                  artifacts_status_expected["not_removed"])
    assert artifacts_status_test["not_found"] == \
        artifacts_status_expected["not_found"]
示例#3
0
def test_remove_lytaf_events_1():
    """Test _remove_lytaf_events() with some artifacts found and others not."""
    # Run _remove_lytaf_events
    time_test, channels_test, artifacts_status_test = \
      lyra._remove_lytaf_events(
          TIME, channels=CHANNELS, artifacts=["LAR", "Offpoint"],
          return_artifacts=True, lytaf_path=TEST_DATA_PATH,
          force_use_local_lytaf=True)
    # Generated expected result
    bad_indices = np.logical_and(TIME >= LYTAF_TEST["begin_time"][0],
                                 TIME <= LYTAF_TEST["end_time"][0])
    bad_indices = np.arange(len(TIME))[bad_indices]
    time_expected = np.delete(TIME, bad_indices)
    channels_expected = [np.delete(CHANNELS[0], bad_indices),
                         np.delete(CHANNELS[1], bad_indices)]
    artifacts_status_expected = {"lytaf": LYTAF_TEST, "removed": LYTAF_TEST[0],
                                 "not_removed": LYTAF_TEST[1],
                                 "not_found": ["Offpoint"]}
    # Assert test values are same as expected
    assert time_test.all() == time_expected.all()
    assert (channels_test[0]).all() == (channels_expected[0]).all()
    assert (channels_test[1]).all() == (channels_expected[1]).all()
    assert artifacts_status_test.keys() == artifacts_status_expected.keys()
    np.testing.assert_array_equal(artifacts_status_test["lytaf"],
                                  artifacts_status_expected["lytaf"])
    np.testing.assert_array_equal(artifacts_status_test["removed"],
                                  artifacts_status_expected["removed"])
    np.testing.assert_array_equal(artifacts_status_test["not_removed"],
                                  artifacts_status_expected["not_removed"])
    assert artifacts_status_test["not_found"] == \
      artifacts_status_expected["not_found"]

    # Test that correct values are returned when channels kwarg not
    # supplied.
    # Run _remove_lytaf_events
    time_test, artifacts_status_test = \
      lyra._remove_lytaf_events(
          TIME, artifacts=["LAR", "Offpoint"],
          return_artifacts=True, lytaf_path=TEST_DATA_PATH,
          force_use_local_lytaf=True)
    # Assert test values are same as expected
    assert time_test.all() == time_expected.all()
    assert artifacts_status_test.keys() == artifacts_status_expected.keys()
    np.testing.assert_array_equal(artifacts_status_test["lytaf"],
                                  artifacts_status_expected["lytaf"])
    np.testing.assert_array_equal(artifacts_status_test["removed"],
                                  artifacts_status_expected["removed"])
    np.testing.assert_array_equal(artifacts_status_test["not_removed"],
                                  artifacts_status_expected["not_removed"])
    assert artifacts_status_test["not_found"] == \
      artifacts_status_expected["not_found"]
示例#4
0
def test_remove_lytaf_events_from_timeseries(lyra_ts):
    """
    Test if artifact are correctly removed from a TimeSeries.
    """
    # Check correct errors are raised due to bad input
    with pytest.raises(AttributeError):
        ts_test = lyra.remove_lytaf_events_from_timeseries(
            [], force_use_local_lytaf=True)

    # Run remove_artifacts_from_timeseries, returning artifact
    # status
    ts_test, artifact_status_test = \
        lyra.remove_lytaf_events_from_timeseries(
            lyra_ts, artifacts=["LAR", "Offpoint"], return_artifacts=True,
            force_use_local_lytaf=True)
    # Generate expected data by calling _remove_lytaf_events and
    # constructing expected dataframe manually.
    time, channels, artifact_status_expected = lyra._remove_lytaf_events(
        lyra_ts.to_dataframe().index,
        channels=[
            np.asanyarray(lyra_ts.to_dataframe()["CHANNEL1"]),
            np.asanyarray(lyra_ts.to_dataframe()["CHANNEL2"]),
            np.asanyarray(lyra_ts.to_dataframe()["CHANNEL3"]),
            np.asanyarray(lyra_ts.to_dataframe()["CHANNEL4"])
        ],
        artifacts=["LAR", "Offpoint"],
        return_artifacts=True,
        force_use_local_lytaf=True)
    dataframe_expected = pandas.DataFrame(index=time,
                                          data={
                                              "CHANNEL1": channels[0],
                                              "CHANNEL2": channels[1],
                                              "CHANNEL3": channels[2],
                                              "CHANNEL4": channels[3]
                                          })
    # Assert expected result is returned
    pandas.testing.assert_frame_equal(ts_test.to_dataframe(),
                                      dataframe_expected)
    assert artifact_status_test.keys() == artifact_status_expected.keys()
    np.testing.assert_array_equal(artifact_status_test["lytaf"],
                                  artifact_status_expected["lytaf"])
    np.testing.assert_array_equal(artifact_status_test["removed"],
                                  artifact_status_expected["removed"])
    np.testing.assert_array_equal(artifact_status_test["not_removed"],
                                  artifact_status_expected["not_removed"])
    assert artifact_status_test["not_found"] == \
        artifact_status_expected["not_found"]

    # Run remove_artifacts_from_timeseries, without returning
    # artifact status
    ts_test = \
        lyra.remove_lytaf_events_from_timeseries(
            lyra_ts, artifacts=["LAR", "Offpoint"],
            force_use_local_lytaf=True)
    # Assert expected result is returned
    pandas.testing.assert_frame_equal(ts_test.to_dataframe(),
                                      dataframe_expected)
示例#5
0
def test_remove_lytaf_events_2():
    """Test _remove_lytaf_events() with no user artifacts found."""
    # Run _remove_lytaf_events
    time_test, channels_test, artifacts_status_test = \
      lyra._remove_lytaf_events(
          TIME, channels=CHANNELS, artifacts="Offpoint",
          return_artifacts=True, lytaf_path=TEST_DATA_PATH,
          force_use_local_lytaf=True)
    # Generated expected result
    time_expected = TIME
    channels_expected = CHANNELS
    artifacts_status_expected = {"lytaf": LYTAF_TEST, "removed": EMPTY_LYTAF,
                                 "not_removed": LYTAF_TEST,
                                 "not_found": ["Offpoint"]}
    # Assert test values are same as expected
    assert time_test.all() == time_expected.all()
    assert (channels_test[0]).all() == (channels_expected[0]).all()
    assert (channels_test[1]).all() == (channels_expected[1]).all()
    assert artifacts_status_test.keys() == artifacts_status_expected.keys()
    np.testing.assert_array_equal(artifacts_status_test["lytaf"],
                                  artifacts_status_expected["lytaf"])
    np.testing.assert_array_equal(artifacts_status_test["removed"],
                                  artifacts_status_expected["removed"])
    np.testing.assert_array_equal(artifacts_status_test["not_removed"],
                                  artifacts_status_expected["not_removed"])
    assert artifacts_status_test["not_found"] == \
      artifacts_status_expected["not_found"]

    # Test correct values are returned when return_artifacts kwarg not
    # supplied.
    # Case 1: channels kwarg is True
    # Run _remove_lytaf_events
    time_test, channels_test = lyra._remove_lytaf_events(
        TIME, channels=CHANNELS, artifacts=["Offpoint"],
        lytaf_path=TEST_DATA_PATH, force_use_local_lytaf=True)
    assert time_test.all() == time_expected.all()
    assert (channels_test[0]).all() == (channels_expected[0]).all()
    assert (channels_test[1]).all() == (channels_expected[1]).all()
    # Case 2: channels kwarg is False
    # Run _remove_lytaf_events
    time_test = lyra._remove_lytaf_events(
        TIME, artifacts=["Offpoint"],
        lytaf_path=TEST_DATA_PATH, force_use_local_lytaf=True)
    assert time_test.all() == time_expected.all()
示例#6
0
def test_remove_lytaf_events_from_timeseries(dtype):
    """Test if artefacts are correctly removed from a TimeSeries.
    Also test LYRALightCurve for backwards compatibility."""
    # Check correct errors are raised due to bad input
    with pytest.raises(AttributeError):
        ts_test = lyra.remove_lytaf_events_from_timeseries(
            [], lytaf_path=TEST_DATA_PATH, force_use_local_lytaf=True)

    # Run remove_artifacts_from_timeseries, returning artifact
    # status
    ts = get_lyradata(dtype)
    ts_test, artifact_status_test = \
        lyra.remove_lytaf_events_from_timeseries(
            ts, artifacts=["LAR", "Offpoint"], return_artifacts=True,
            lytaf_path=TEST_DATA_PATH, force_use_local_lytaf=True)
    # Generate expected data by calling _remove_lytaf_events and
    # constructing expected dataframe manually.
    time, channels, artifact_status_expected = lyra._remove_lytaf_events(
        ts.data.index,
        channels=[
            np.asanyarray(ts.data["CHANNEL1"]),
            np.asanyarray(ts.data["CHANNEL2"]),
            np.asanyarray(ts.data["CHANNEL3"]),
            np.asanyarray(ts.data["CHANNEL4"])
        ],
        artifacts=["LAR", "Offpoint"],
        return_artifacts=True,
        lytaf_path=TEST_DATA_PATH,
        force_use_local_lytaf=True)
    dataframe_expected = pandas.DataFrame(index=time,
                                          data={
                                              "CHANNEL1": channels[0],
                                              "CHANNEL2": channels[1],
                                              "CHANNEL3": channels[2],
                                              "CHANNEL4": channels[3]
                                          })
    # Assert expected result is returned
    pandas.util.testing.assert_frame_equal(ts_test.data, dataframe_expected)
    assert artifact_status_test.keys() == artifact_status_expected.keys()
    np.testing.assert_array_equal(artifact_status_test["lytaf"],
                                  artifact_status_expected["lytaf"])
    np.testing.assert_array_equal(artifact_status_test["removed"],
                                  artifact_status_expected["removed"])
    np.testing.assert_array_equal(artifact_status_test["not_removed"],
                                  artifact_status_expected["not_removed"])
    assert artifact_status_test["not_found"] == \
        artifact_status_expected["not_found"]

    # Run remove_artifacts_from_timeseries, without returning
    # artifact status
    ts_test = \
        lyra.remove_lytaf_events_from_timeseries(
            ts, artifacts=["LAR", "Offpoint"],
            lytaf_path=TEST_DATA_PATH, force_use_local_lytaf=True)
    # Assert expected result is returned
    pandas.util.testing.assert_frame_equal(ts_test.data, dataframe_expected)
示例#7
0
def test_remove_lytaf_events_from_lightcurve():
    """Test if artefacts are correctly removed from a LYRAlightCurve."""
    # Create sample LYRALightCurve
    lyralc = lightcurve.LYRALightCurve.create("2014-01-01")
    lyralc.data = pandas.DataFrame(index=TIME,
                                   data={"CHANNEL1": CHANNELS[0],
                                         "CHANNEL2": CHANNELS[1],
                                         "CHANNEL3": CHANNELS[0],
                                         "CHANNEL4": CHANNELS[1]})
    # Check correct errors are raised due to bad input
    with pytest.raises(TypeError):
        lyralc_test = lyra.remove_lytaf_events_from_lightcurve(
            [], lytaf_path=TEST_DATA_PATH, force_use_local_lytaf=True)

    # Run remove_artifacts_from_lyralightcurve, returning artifact
    # status
    lyralc_test, artifact_status_test = \
      lyra.remove_lytaf_events_from_lightcurve(
          lyralc, artifacts=["LAR", "Offpoint"], return_artifacts=True,
          lytaf_path=TEST_DATA_PATH, force_use_local_lytaf=True)
    # Generate expected data by calling _remove_lytaf_events and
    # constructing expected dataframe manually.
    time, channels, artifact_status_expected = lyra._remove_lytaf_events(
        lyralc.data.index, channels=[np.asanyarray(lyralc.data["CHANNEL1"]),
                                     np.asanyarray(lyralc.data["CHANNEL2"]),
                                     np.asanyarray(lyralc.data["CHANNEL3"]),
                                     np.asanyarray(lyralc.data["CHANNEL4"])],
        artifacts=["LAR", "Offpoint"], return_artifacts=True,
        lytaf_path=TEST_DATA_PATH, force_use_local_lytaf=True)
    dataframe_expected = pandas.DataFrame(index=time,
                                          data={"CHANNEL1": channels[0],
                                                "CHANNEL2": channels[1],
                                                "CHANNEL3": channels[2],
                                                "CHANNEL4": channels[3]})
    # Assert expected result is returned
    pandas.util.testing.assert_frame_equal(lyralc_test.data, dataframe_expected)
    assert artifact_status_test.keys() == artifact_status_expected.keys()
    np.testing.assert_array_equal(artifact_status_test["lytaf"],
                                  artifact_status_expected["lytaf"])
    np.testing.assert_array_equal(artifact_status_test["removed"],
                                  artifact_status_expected["removed"])
    np.testing.assert_array_equal(artifact_status_test["not_removed"],
                                  artifact_status_expected["not_removed"])
    assert artifact_status_test["not_found"] == \
      artifact_status_expected["not_found"]

    # Run remove_artifacts_from_lyralightcurve, without returning
    # artifact status
    lyralc_test = \
      lyra.remove_lytaf_events_from_lightcurve(
          lyralc, artifacts=["LAR", "Offpoint"],
          lytaf_path=TEST_DATA_PATH, force_use_local_lytaf=True)
    # Assert expected result is returned
    pandas.util.testing.assert_frame_equal(lyralc_test.data, dataframe_expected)
示例#8
0
def test_remove_lytaf_events_from_timeseries(dtype):
    """Test if artefacts are correctly removed from a TimeSeries.
    Also test LYRALightCurve for backwards compatibility."""
    # Check correct errors are raised due to bad input
    with pytest.raises(AttributeError):
        ts_test = lyra.remove_lytaf_events_from_timeseries(
            [], lytaf_path=TEST_DATA_PATH, force_use_local_lytaf=True)

    # Run remove_artifacts_from_timeseries, returning artifact
    # status
    ts = get_lyradata(dtype)
    ts_test, artifact_status_test = \
        lyra.remove_lytaf_events_from_timeseries(
            ts, artifacts=["LAR", "Offpoint"], return_artifacts=True,
            lytaf_path=TEST_DATA_PATH, force_use_local_lytaf=True)
    # Generate expected data by calling _remove_lytaf_events and
    # constructing expected dataframe manually.
    time, channels, artifact_status_expected = lyra._remove_lytaf_events(
        ts.data.index, channels=[np.asanyarray(ts.data["CHANNEL1"]),
                                 np.asanyarray(ts.data["CHANNEL2"]),
                                 np.asanyarray(ts.data["CHANNEL3"]),
                                 np.asanyarray(ts.data["CHANNEL4"])],
        artifacts=["LAR", "Offpoint"], return_artifacts=True,
        lytaf_path=TEST_DATA_PATH, force_use_local_lytaf=True)
    dataframe_expected = pandas.DataFrame(index=time,
                                          data={"CHANNEL1": channels[0],
                                                "CHANNEL2": channels[1],
                                                "CHANNEL3": channels[2],
                                                "CHANNEL4": channels[3]})
    # Assert expected result is returned
    pandas.util.testing.assert_frame_equal(ts_test.data, dataframe_expected)
    assert artifact_status_test.keys() == artifact_status_expected.keys()
    np.testing.assert_array_equal(artifact_status_test["lytaf"],
                                  artifact_status_expected["lytaf"])
    np.testing.assert_array_equal(artifact_status_test["removed"],
                                  artifact_status_expected["removed"])
    np.testing.assert_array_equal(artifact_status_test["not_removed"],
                                  artifact_status_expected["not_removed"])
    assert artifact_status_test["not_found"] == \
        artifact_status_expected["not_found"]

    # Run remove_artifacts_from_timeseries, without returning
    # artifact status
    ts_test = \
        lyra.remove_lytaf_events_from_timeseries(
            ts, artifacts=["LAR", "Offpoint"],
            lytaf_path=TEST_DATA_PATH, force_use_local_lytaf=True)
    # Assert expected result is returned
    pandas.util.testing.assert_frame_equal(ts_test.data, dataframe_expected)
示例#9
0
def test_remove_lytaf_events_3(local_cache):
    """
    Test if correct errors are raised by _remove_lytaf_events().
    """
    with pytest.raises(TypeError):
        lyra._remove_lytaf_events(TIME, channels=6, artifacts=["LAR"],
                                  force_use_local_lytaf=True)
    with pytest.raises(ValueError):
        lyra._remove_lytaf_events(TIME,
                                  force_use_local_lytaf=True)
    with pytest.raises(TypeError):
        lyra._remove_lytaf_events(TIME, artifacts=[6],
                                  force_use_local_lytaf=True)
    with pytest.raises(ValueError):
        lyra._remove_lytaf_events(TIME,
                                  artifacts=["LAR", "incorrect artifact type"],
                                  force_use_local_lytaf=True)
示例#10
0
def test_remove_lytaf_events_3():
    """Test if correct errors are raised by _remove_lytaf_events()."""
    with pytest.raises(TypeError):
        lyra._remove_lytaf_events(TIME, channels=6, artifacts=["LAR"],
                                  lytaf_path=TEST_DATA_PATH,
                                  force_use_local_lytaf=True)
    with pytest.raises(ValueError):
        lyra._remove_lytaf_events(TIME,
                                  lytaf_path=TEST_DATA_PATH,
                                  force_use_local_lytaf=True)
    with pytest.raises(TypeError):
        lyra._remove_lytaf_events(TIME, artifacts=[6],
                                  lytaf_path=TEST_DATA_PATH,
                                  force_use_local_lytaf=True)
    with pytest.raises(ValueError):
        lyra._remove_lytaf_events(TIME,
                                  artifacts=["LAR","incorrect artifact type"],
                                  lytaf_path=TEST_DATA_PATH,
                                  force_use_local_lytaf=True)
示例#11
0
def test_remove_lytaf_events_from_lightcurve():
    """Test if artefacts are correctly removed from a LYRAlightCurve."""
    # Create sample LYRALightCurve
    lyralc = lightcurve.LYRALightCurve.create("2014-01-01")
    lyralc.data = pandas.DataFrame(index=TIME,
                                   data={
                                       "CHANNEL1": CHANNELS[0],
                                       "CHANNEL2": CHANNELS[1],
                                       "CHANNEL3": CHANNELS[0],
                                       "CHANNEL4": CHANNELS[1]
                                   })
    # Check correct errors are raised due to bad input
    with pytest.raises(TypeError):
        lyralc_test = lyra.remove_lytaf_events_from_lightcurve(
            [], lytaf_path=TEST_DATA_PATH, force_use_local_lytaf=True)

    # Run remove_artifacts_from_lyralightcurve, returning artifact
    # status
    lyralc_test, artifact_status_test = \
      lyra.remove_lytaf_events_from_lightcurve(
          lyralc, artifacts=["LAR", "Offpoint"], return_artifacts=True,
          lytaf_path=TEST_DATA_PATH, force_use_local_lytaf=True)
    # Generate expected data by calling _remove_lytaf_events and
    # constructing expected dataframe manually.
    time, channels, artifact_status_expected = lyra._remove_lytaf_events(
        lyralc.data.index,
        channels=[
            np.asanyarray(lyralc.data["CHANNEL1"]),
            np.asanyarray(lyralc.data["CHANNEL2"]),
            np.asanyarray(lyralc.data["CHANNEL3"]),
            np.asanyarray(lyralc.data["CHANNEL4"])
        ],
        artifacts=["LAR", "Offpoint"],
        return_artifacts=True,
        lytaf_path=TEST_DATA_PATH,
        force_use_local_lytaf=True)
    dataframe_expected = pandas.DataFrame(index=time,
                                          data={
                                              "CHANNEL1": channels[0],
                                              "CHANNEL2": channels[1],
                                              "CHANNEL3": channels[2],
                                              "CHANNEL4": channels[3]
                                          })
    # Assert expected result is returned
    pandas.util.testing.assert_frame_equal(lyralc_test.data,
                                           dataframe_expected)
    assert artifact_status_test.keys() == artifact_status_expected.keys()
    np.testing.assert_array_equal(artifact_status_test["lytaf"],
                                  artifact_status_expected["lytaf"])
    np.testing.assert_array_equal(artifact_status_test["removed"],
                                  artifact_status_expected["removed"])
    np.testing.assert_array_equal(artifact_status_test["not_removed"],
                                  artifact_status_expected["not_removed"])
    assert artifact_status_test["not_found"] == \
      artifact_status_expected["not_found"]

    # Run remove_artifacts_from_lyralightcurve, without returning
    # artifact status
    lyralc_test = \
      lyra.remove_lytaf_events_from_lightcurve(
          lyralc, artifacts=["LAR", "Offpoint"],
          lytaf_path=TEST_DATA_PATH, force_use_local_lytaf=True)
    # Assert expected result is returned
    pandas.util.testing.assert_frame_equal(lyralc_test.data,
                                           dataframe_expected)