示例#1
0
文件: jsoc.py 项目: lamby/sunpy
    def _multi_request(self, **kwargs):
        """
        Make a series of requests to avoid the 100GB limit
        """
        start_time = kwargs.pop('start_time', None)
        end_time = kwargs.pop('end_time', None)
        series = kwargs.pop('series', None)
        if any(x is None for x in (start_time, end_time, series)):
            return []
        start_time = self._process_time(start_time)
        end_time = self._process_time(end_time)
        tr = TimeRange(start_time, end_time)
        returns = []
        response, json_response = self._send_jsoc_request(
            start_time, end_time, series, **kwargs)

        # We skip these lines because a massive request is not a practical test.
        error_response = 'Request exceeds max byte limit of 100000MB'
        if (json_response['status'] == 3 and json_response['error']
                == error_response):  # pragma: no cover
            returns.append(
                self._multi_request(tr.start(), tr.center(), series,
                                    **kwargs)[0])
            # pragma: no cover
            returns.append(
                self._multi_request(tr.center(), tr.end(), series,
                                    **kwargs)[0])
            # pragma: no cover

        else:
            returns.append(response)

        return returns
示例#2
0
文件: jsoc.py 项目: Hypnus1803/sunpy
    def _multi_request(self, **kwargs):
        """
        Make a series of requests to avoid the 100GB limit
        """
        start_time = kwargs.pop('start_time', None)
        end_time = kwargs.pop('end_time', None)
        series = kwargs.pop('series', None)
        if any(x is None for x in (start_time, end_time, series)):
            return []
        start_time = self._process_time(start_time)
        end_time = self._process_time(end_time)
        tr = TimeRange(start_time, end_time)
        returns = []
        response, json_response = self._send_jsoc_request(start_time, end_time,
                                                          series, **kwargs)

        # We skip these lines because a massive request is not a practical test.
        error_response = 'Request exceeds max byte limit of 100000MB'
        if (json_response['status'] == 3 and
                json_response['error'] == error_response):  # pragma: no cover
            returns.append(self._multi_request(tr.start(), tr.center(), series, **kwargs)[0])
            # pragma: no cover
            returns.append(self._multi_request(tr.center(), tr.end(), series, **kwargs)[0])
            # pragma: no cover

        else:
            returns.append(response)

        return returns
示例#3
0
文件: jsoc.py 项目: debugger22/sunpy
    def _multi_request(self, start_time, end_time, series, **kwargs):
        """
        Make a series of requests to avoid the 100GB limit
        """
        tr = TimeRange(start_time, end_time)
        returns = []

        response, json_response = self._send_jsoc_request(start_time, end_time, series, **kwargs)

        if json_response['status'] == 3 and json_response['error'] == 'Request exceeds max byte limit of 100000MB':
            returns.append(self._multi_request(tr.start(), tr.center(), series, **kwargs)[0])
            returns.append(self._multi_request(tr.center(), tr.end(), series, **kwargs)[0])
        else:
            returns.append(response)

        return returns
示例#4
0
文件: jsoc.py 项目: saemideluxe/sunpy
    def _multi_request(self, start_time, end_time, series, **kwargs):
        """
        Make a series of requests to avoid the 100GB limit
        """
        tr = TimeRange(start_time, end_time)
        returns = []

        response, json_response = self._send_jsoc_request(start_time, end_time, series, **kwargs)

        if json_response['status'] == 3 and json_response['error'] == 'Request exceeds max byte limit of 100000MB':
            returns.append(self._multi_request(tr.start(), tr.center(), series, **kwargs)[0])
            returns.append(self._multi_request(tr.center(), tr.end(), series, **kwargs)[0])
        else:
            returns.append(response)

        return returns
示例#5
0
def backprojection(calibrated_event_list, pixel_size=(1.,1.), image_dim=(64,64)):
    """Given a stacked calibrated event list fits file create a back 
    projection image.
    
    .. warning:: The image is not in the right orientation!

    Parameters
    ----------
    calibrated_event_list : string
        filename of a RHESSI calibrated event list
    detector : int
        the detector number
    pixel_size : 2-tuple
        the size of the pixels in arcseconds. Default is (1,1).
    image_dim : 2-tuple
        the size of the output image in number of pixels

    Returns
    -------
    out : RHESSImap
        Return a backprojection map.

    Examples
    --------
    >>> import sunpy.instr.rhessi as rhessi
    >>> map = rhessi.backprojection(sunpy.RHESSI_EVENT_LIST)
    >>> map.show()

    """
    
    calibrated_event_list = sunpy.RHESSI_EVENT_LIST
    fits = pyfits.open(calibrated_event_list)
    info_parameters = fits[2]
    xyoffset = info_parameters.data.field('USED_XYOFFSET')[0]
    time_range = TimeRange(info_parameters.data.field('ABSOLUTE_TIME_RANGE')[0])
    
    image = np.zeros(image_dim)
    
    #find out what detectors were used
    det_index_mask = fits[1].data.field('det_index_mask')[0]    
    detector_list = (np.arange(9)+1) * np.array(det_index_mask)
    for detector in detector_list:
        if detector > 0:
            image = image + _backproject(calibrated_event_list, detector=detector, pixel_size=pixel_size, image_dim=image_dim)
    
    dict_header = {
        "DATE-OBS": time_range.center().strftime("%Y-%m-%d %H:%M:%S"), 
        "CDELT1": pixel_size[0],
        "NAXIS1": image_dim[0],
        "CRVAL1": xyoffset[0],
        "CRPIX1": image_dim[0]/2 + 0.5, 
        "CUNIT1": "arcsec",
        "CTYPE1": "HPLN-TAN",
        "CDELT2": pixel_size[1],
        "NAXIS2": image_dim[1],
        "CRVAL2": xyoffset[1],
        "CRPIX2": image_dim[0]/2 + 0.5,
        "CUNIT2": "arcsec",
        "CTYPE2": "HPLT-TAN",
        "HGLT_OBS": 0,
        "HGLN_OBS": 0,
        "RSUN_OBS": solar_semidiameter_angular_size(time_range.center()),
        "RSUN_REF": sun.radius,
        "DSUN_OBS": sunearth_distance(time_range.center()) * sunpy.sun.constants.au
    }
    
    header = sunpy.map.MapHeader(dict_header)
    result_map = sunpy.map.Map(image, header)
            
    return result_map
示例#6
0
def backprojection(calibrated_event_list,
                   pixel_size=(1., 1.) * u.arcsec,
                   image_dim=(64, 64) * u.pix):
    """
    Given a stacked calibrated event list fits file create a back
    projection image.

    .. warning:: The image is not in the right orientation!

    Parameters
    ----------
    calibrated_event_list : string
        filename of a RHESSI calibrated event list
    pixel_size : `~astropy.units.Quantity` instance
        the size of the pixels in arcseconds. Default is (1,1).
    image_dim : `~astropy.units.Quantity` instance
        the size of the output image in number of pixels

    Returns
    -------
    out : RHESSImap
        Return a backprojection map.

    Examples
    --------
    >>> import sunpy.data
    >>> import sunpy.data.sample
    >>> import sunpy.instr.rhessi as rhessi
    >>> sunpy.data.download_sample_data(overwrite=False)   # doctest: +SKIP
    >>> map = rhessi.backprojection(sunpy.data.sample.RHESSI_EVENT_LIST)   # doctest: +SKIP
    >>> map.peek()   # doctest: +SKIP

    """
    if not isinstance(pixel_size, u.Quantity):
        raise ValueError("Must be astropy Quantity in arcseconds")
    try:
        pixel_size = pixel_size.to(u.arcsec)
    except:
        raise ValueError("'{0}' is not a valid pixel_size unit".format(
            pixel_size.unit))
    if not (isinstance(image_dim, u.Quantity) and image_dim.unit == 'pix'):
        raise ValueError("Must be astropy Quantity in pixels")

    try:
        import sunpy.data.sample
    except ImportError:
        import sunpy.data
        sunpy.data.download_sample()
    # This may need to be moved up to data from sample
    calibrated_event_list = sunpy.data.sample.RHESSI_EVENT_LIST

    afits = fits.open(calibrated_event_list)
    info_parameters = afits[2]
    xyoffset = info_parameters.data.field('USED_XYOFFSET')[0]
    time_range = TimeRange(
        info_parameters.data.field('ABSOLUTE_TIME_RANGE')[0])

    image = np.zeros(image_dim.value)

    # find out what detectors were used
    det_index_mask = afits[1].data.field('det_index_mask')[0]
    detector_list = (np.arange(9) + 1) * np.array(det_index_mask)
    for detector in detector_list:
        if detector > 0:
            image = image + _backproject(calibrated_event_list,
                                         detector=detector,
                                         pixel_size=pixel_size.value,
                                         image_dim=image_dim.value)

    dict_header = {
        "DATE-OBS":
        time_range.center().strftime("%Y-%m-%d %H:%M:%S"),
        "CDELT1":
        pixel_size[0],
        "NAXIS1":
        image_dim[0],
        "CRVAL1":
        xyoffset[0],
        "CRPIX1":
        image_dim[0].value / 2 + 0.5,
        "CUNIT1":
        "arcsec",
        "CTYPE1":
        "HPLN-TAN",
        "CDELT2":
        pixel_size[1],
        "NAXIS2":
        image_dim[1],
        "CRVAL2":
        xyoffset[1],
        "CRPIX2":
        image_dim[0].value / 2 + 0.5,
        "CUNIT2":
        "arcsec",
        "CTYPE2":
        "HPLT-TAN",
        "HGLT_OBS":
        0,
        "HGLN_OBS":
        0,
        "RSUN_OBS":
        solar_semidiameter_angular_size(time_range.center()).value,
        "RSUN_REF":
        sunpy.sun.constants.radius.value,
        "DSUN_OBS":
        sunearth_distance(time_range.center()) * sunpy.sun.constants.au.value
    }

    header = sunpy.map.MapMeta(dict_header)
    result_map = sunpy.map.Map(image, header)

    return result_map
示例#7
0
文件: rhessi.py 项目: judeebene/sunpy
def backprojection(calibrated_event_list,
                   pixel_size=(1., 1.),
                   image_dim=(64, 64)):
    """
    Given a stacked calibrated event list fits file create a back 
    projection image.
    
    .. warning:: The image is not in the right orientation!

    Parameters
    ----------
    calibrated_event_list : string
        filename of a RHESSI calibrated event list
    detector : int
        the detector number
    pixel_size : 2-tuple
        the size of the pixels in arcseconds. Default is (1,1).
    image_dim : 2-tuple
        the size of the output image in number of pixels

    Returns
    -------
    out : RHESSImap
        Return a backprojection map.

    Examples
    --------
    >>> import sunpy.instr.rhessi as rhessi
    >>> map = rhessi.backprojection(sunpy.RHESSI_EVENT_LIST)
    >>> map.show()

    """

    calibrated_event_list = sunpy.RHESSI_EVENT_LIST
    afits = fits.open(calibrated_event_list)
    info_parameters = afits[2]
    xyoffset = info_parameters.data.field('USED_XYOFFSET')[0]
    time_range = TimeRange(
        info_parameters.data.field('ABSOLUTE_TIME_RANGE')[0])

    image = np.zeros(image_dim)

    #find out what detectors were used
    det_index_mask = afits[1].data.field('det_index_mask')[0]
    detector_list = (np.arange(9) + 1) * np.array(det_index_mask)
    for detector in detector_list:
        if detector > 0:
            image = image + _backproject(calibrated_event_list,
                                         detector=detector,
                                         pixel_size=pixel_size,
                                         image_dim=image_dim)

    dict_header = {
        "DATE-OBS": time_range.center().strftime("%Y-%m-%d %H:%M:%S"),
        "CDELT1": pixel_size[0],
        "NAXIS1": image_dim[0],
        "CRVAL1": xyoffset[0],
        "CRPIX1": image_dim[0] / 2 + 0.5,
        "CUNIT1": "arcsec",
        "CTYPE1": "HPLN-TAN",
        "CDELT2": pixel_size[1],
        "NAXIS2": image_dim[1],
        "CRVAL2": xyoffset[1],
        "CRPIX2": image_dim[0] / 2 + 0.5,
        "CUNIT2": "arcsec",
        "CTYPE2": "HPLT-TAN",
        "HGLT_OBS": 0,
        "HGLN_OBS": 0,
        "RSUN_OBS": solar_semidiameter_angular_size(time_range.center()),
        "RSUN_REF": sun.radius,
        "DSUN_OBS":
        sunearth_distance(time_range.center()) * sunpy.sun.constants.au
    }

    header = sunpy.map.MapHeader(dict_header)
    result_map = sunpy.map.Map(image, header)

    return result_map
示例#8
0
文件: rhessi.py 项目: bsipocz/sunpy
def backprojection(calibrated_event_list, pixel_size=(1.,1.) * u.arcsec, image_dim=(64,64) * u.pix):
    """
    Given a stacked calibrated event list fits file create a back
    projection image.

    .. warning:: The image is not in the right orientation!

    Parameters
    ----------
    calibrated_event_list : string
        filename of a RHESSI calibrated event list
    detector : int
        the detector number
    pixel_size : `~astropy.units.Quantity` instance
        the size of the pixels in arcseconds. Default is (1,1).
    image_dim : `~astropy.units.Quantity` instance
        the size of the output image in number of pixels

    Returns
    -------
    out : RHESSImap
        Return a backprojection map.

    Examples
    --------
    >>> import sunpy.instr.rhessi as rhessi
    >>> map = rhessi.backprojection(sunpy.RHESSI_EVENT_LIST)
    >>> map.peek()

    """
    if not isinstance(pixel_size, u.Quantity):
        raise ValueError("Must be astropy Quantity in arcseconds")
    try:
        pixel_size = pixel_size.to(u.arcsec)
    except:
        raise ValueError("'{0}' is not a valid pixel_size unit".format(pixel_size.unit))
    if not (isinstance(image_dim, u.Quantity) and image_dim.unit == 'pix'):
        raise ValueError("Must be astropy Quantity in pixels")
    calibrated_event_list = sunpy.RHESSI_EVENT_LIST
    afits = fits.open(calibrated_event_list)
    info_parameters = afits[2]
    xyoffset = info_parameters.data.field('USED_XYOFFSET')[0]
    time_range = TimeRange(info_parameters.data.field('ABSOLUTE_TIME_RANGE')[0])
    
    image = np.zeros(image_dim.value)
    
    #find out what detectors were used
    det_index_mask = afits[1].data.field('det_index_mask')[0]
    detector_list = (np.arange(9)+1) * np.array(det_index_mask)
    for detector in detector_list:
        if detector > 0:
            image = image + _backproject(calibrated_event_list, detector=detector, pixel_size=pixel_size.value
										 , image_dim=image_dim.value)
    
    dict_header = {
        "DATE-OBS": time_range.center().strftime("%Y-%m-%d %H:%M:%S"),
        "CDELT1": pixel_size[0],
        "NAXIS1": image_dim[0],
        "CRVAL1": xyoffset[0],
        "CRPIX1": image_dim[0].value/2 + 0.5, 
        "CUNIT1": "arcsec",
        "CTYPE1": "HPLN-TAN",
        "CDELT2": pixel_size[1],
        "NAXIS2": image_dim[1],
        "CRVAL2": xyoffset[1],
        "CRPIX2": image_dim[0].value/2 + 0.5,
        "CUNIT2": "arcsec",
        "CTYPE2": "HPLT-TAN",
        "HGLT_OBS": 0,
        "HGLN_OBS": 0,
        "RSUN_OBS": solar_semidiameter_angular_size(time_range.center()).value,
        "RSUN_REF": sunpy.sun.constants.radius.value,
        "DSUN_OBS": sunearth_distance(time_range.center()) * sunpy.sun.constants.au.value
    }

    header = sunpy.map.MapMeta(dict_header)
    result_map = sunpy.map.Map(image, header)

    return result_map