示例#1
0
文件: cube_utils.py 项目: sunpy/cube
def orient(array, wcs, *extra_arrs):
    # This is mostly lifted from astropy's spectral cube.
    """
    Given a 3 or 4D cube and a WCS, swap around the axes so that the
    axes are in the correct order: the first in Numpy notation, and the last
    in WCS notation.

    Parameters
    ----------
    array : `~numpy.ndarray`
        The input 3- or 4-d array with two position dimensions and one spectral
        dimension.
    wcs : `~sunpy.wcs.WCS`
        The input 3- or 4-d WCS with two position dimensions and one spectral
        dimension.
   extra_arrs: one or more ndarrays, optional
        Extra arrays to orient, corresponding to uncertainties and errors in
        the data.
    """
    if wcs.oriented:  # If this wcs has already been oriented.
        return (array, wcs) + extra_arrs

    if array.ndim != 3 and array.ndim != 4:
        raise ValueError("Input array must be 3- or 4-dimensional")

    if not ((wcs.wcs.naxis == 3 and array.ndim == 3) or
            (wcs.wcs.naxis == 4 and array.ndim == 4 and not wcs.was_augmented)
            or (wcs.wcs.naxis == 4 and array.ndim == 3 and wcs.was_augmented)):
        raise ValueError("WCS must have the same dimensions as the array")

    axtypes = list(wcs.wcs.ctype)

    if wcs.was_augmented:
        array_order = select_order(axtypes[2::-1])
    else:
        array_order = select_order(axtypes)
    result_array = array.transpose(array_order)
    wcs_order = np.array(select_order(axtypes))[::-1]

    result_wcs = wcs_util.reindex_wcs(wcs, wcs_order)
    result_wcs.was_augmented = wcs.was_augmented
    result_wcs.oriented = True
    result_extras = [arr.transpose(array_order) for arr in extra_arrs]
    return (result_array, result_wcs) + tuple(result_extras)
示例#2
0
def orient(array, wcs, *extra_arrs):
    # This is mostly lifted from astropy's spectral cube.
    """
    Given a 3 or 4D cube and a WCS, swap around the axes so that the
    axes are in the correct order: the first in Numpy notation, and the last
    in WCS notation.

    Parameters
    ----------
    array : `~numpy.ndarray`
        The input 3- or 4-d array with two position dimensions and one spectral
        dimension.
    wcs : `~sunpy.wcs.WCS`
        The input 3- or 4-d WCS with two position dimensions and one spectral
        dimension.
   extra_arrs: one or more ndarrays, optional
        Extra arrays to orient, corresponding to uncertainties and errors in
        the data.
    """
    if wcs.oriented:  # If this wcs has already been oriented.
        return (array, wcs) + extra_arrs

    if array.ndim != 3 and array.ndim != 4:
        raise ValueError("Input array must be 3- or 4-dimensional")

    if not ((wcs.wcs.naxis == 3 and array.ndim == 3) or
            (wcs.wcs.naxis == 4 and array.ndim == 4 and not wcs.was_augmented)
            or (wcs.wcs.naxis == 4 and array.ndim == 3 and wcs.was_augmented)):
        raise ValueError("WCS must have the same dimensions as the array")

    axtypes = list(wcs.wcs.ctype)

    if wcs.was_augmented:
        array_order = select_order(axtypes[2::-1])
    else:
        array_order = select_order(axtypes)
    result_array = array.transpose(array_order)
    wcs_order = np.array(select_order(axtypes))

    result_wcs = wcs_util.reindex_wcs(wcs, wcs_order)
    result_wcs.was_augmented = wcs.was_augmented
    result_wcs.oriented = True
    result_extras = [arr.transpose(array_order) for arr in extra_arrs]
    return (result_array, result_wcs) + tuple(result_extras)
示例#3
0
文件: datacube.py 项目: Cadair/cube
 def convert_to_spectral_cube(self):
     """
     Converts this cube into a SpectralCube. It will only work if the cube
     has exactly three dimensions and one of those is a spectral axis.
     """
     if self.data.ndim == 4:
         raise cu.CubeError(4, "Too many dimensions: Can only convert a " +
                            "3D cube. Slice the cube before converting")
     if 'WAVE' not in self.axes_wcs.wcs.ctype:
         raise cu.CubeError(2, 'Spectral axis needed to create a spectrum')
     axis = 0 if self.axes_wcs.wcs.ctype[-1] == 'WAVE' else 1
     coordaxes = [1, 2] if axis == 0 else [0, 2]  # Non-spectral axes
     newwcs = wu.reindex_wcs(self.axes_wcs, np.arary(coordaxes))
     time_or_x_size = self.data.shape[coordaxes[1]]
     y_size = self.data.shape[coordaxes[0]]
     spectra = np.empty((time_or_x_size, y_size), dtype=Spectrum)
     for i in range(time_or_x_size):
         for j in range(y_size):
             spectra[i][j] = self.slice_to_spectrum(i, j)
     return SpectralCube(spectra, newwcs, self.meta)
示例#4
0
文件: datacube.py 项目: Cadair/cube
    def slice_to_cube(self, axis, chunk, **kwargs):
        """
        For a hypercube, return a 3-D cube that has been cut along the given
        axis and with data corresponding to the given chunk.

        Parameters
        ----------
        axis: int
            The axis to cut from the hypercube
        chunk: int, astropy Quantity or tuple:
            The data to take from the axis
        """
        if self.data.ndim == 3:
            raise cu.CubeError(4, 'Can only slice a hypercube into a cube')

        item = [slice(None, None, None) for _ in range(4)]
        if isinstance(chunk, tuple):
            if cu.iter_isinstance(chunk, (u.Quantity, u.Quantity)):
                pixel0 = cu.convert_point(chunk[0].value, chunk[0].unit,
                                          self.axes_wcs, axis)
                pixel1 = cu.convert_point(chunk[1].value, chunk[1].unit,
                                          self.axes_wcs, axis)
                item[axis] = slice(pixel0, pixel1, None)
            elif cu.iter_isinstance((chunk, int, int)):
                item[axis] = slice(chunk[0], chunk[1], None)
            else:
                raise cu.CubeError(5, "Parameters must be of the same type")
            newdata = self.data[item].sum(axis)
        else:
            unit = chunk.unit if isinstance(chunk, u.Quantity) else None
            pixel = cu.convert_point(chunk, unit, self.axes_wcs, axis)
            item[axis] = pixel
            newdata = self.data[item]
        wcs_indices = [0, 1, 2, 3]
        wcs_indices.remove(3 - axis)
        newwcs = wu.reindex_wcs(self.axes_wcs, np.array(wcs_indices))
        if axis == 2 or axis == 3:
            newwcs = wu.add_celestial_axis(newwcs)
            newwcs.was_augmented = True
        cube = Cube(newdata, newwcs, meta=self.meta, **kwargs)
        return cube
示例#5
0
    def slice_to_cube(self, axis, chunk, **kwargs):
        """
        For a hypercube, return a 3-D cube that has been cut along the given
        axis and with data corresponding to the given chunk.

        Parameters
        ----------
        axis: int
            The axis to cut from the hypercube
        chunk: int, astropy Quantity or tuple:
            The data to take from the axis
        """
        if self.data.ndim == 3:
            raise cu.CubeError(4, 'Can only slice a hypercube into a cube')

        item = [slice(None, None, None) for _ in range(4)]
        if isinstance(chunk, tuple):
            if cu.iter_isinstance(chunk, (u.Quantity, u.Quantity)):
                pixel0 = cu.convert_point(chunk[0].value, chunk[0].unit,
                                          self.axes_wcs, axis)
                pixel1 = cu.convert_point(chunk[1].value, chunk[1].unit,
                                          self.axes_wcs, axis)
                item[axis] = slice(pixel0, pixel1, None)
            elif cu.iter_isinstance((chunk, int, int)):
                item[axis] = slice(chunk[0], chunk[1], None)
            else:
                raise cu.CubeError(5, "Parameters must be of the same type")
            newdata = self.data[item].sum(axis)
        else:
            unit = chunk.unit if isinstance(chunk, u.Quantity) else None
            pixel = cu.convert_point(chunk, unit, self.axes_wcs, axis)
            item[axis] = pixel
            newdata = self.data[item]
        wcs_indices = [0, 1, 2, 3]
        wcs_indices.remove(3 - axis)
        newwcs = wu.reindex_wcs(self.axes_wcs, np.array(wcs_indices))
        if axis == 2 or axis == 3:
            newwcs = wu.add_celestial_axis(newwcs)
            newwcs.was_augmented = True
        cube = Cube(newdata, newwcs, meta=self.meta, **kwargs)
        return cube
示例#6
0
 def convert_to_spectral_cube(self):
     """
     Converts this cube into an EISSpectralCube. It will only work if the
     cube has exactly three dimensions and one of those is a spectral axis.
     """
     if self.data.ndim == 4:
         raise cu.CubeError(
             4, "Too many dimensions: Can only convert a " +
             "3D cube. Slice the cube before converting")
     if 'WAVE' not in self.axes_wcs.wcs.ctype:
         raise cu.CubeError(2, 'Spectral axis needed to create a spectrum')
     axis = 0 if self.axes_wcs.wcs.ctype[-1] == 'WAVE' else 1
     coordaxes = [1, 2] if axis == 0 else [0, 2]  # Non-spectral axes
     newwcs = wu.reindex_wcs(self.axes_wcs, np.array(coordaxes))
     time_or_x_size = self.data.shape[coordaxes[1]]
     y_size = self.data.shape[coordaxes[0]]
     spectra = np.empty((time_or_x_size, y_size), dtype=Spectrum)
     for i in range(time_or_x_size):
         for j in range(y_size):
             spectra[i][j] = self.slice_to_spectrum(j, i)
     return EISSpectralCube(spectra, newwcs, self.meta)