def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        if self.args.feat in ('char', 'bert', 'elmo'):
            self.WORD, self.FEAT = self.transform.FORM
        else:
            self.WORD, self.FEAT = self.transform.FORM, self.transform.CPOS
        self.ARC, self.REL = self.transform.HEAD, self.transform.DEPREL
        self.puncts = torch.tensor([i
                                    for s, i in self.WORD.vocab.stoi.items()
                                    if ispunct(s)]).to(self.args.device)
        if self.args.elmo_options:
            self.elmo = ElmoEmbedder(self.args.elmo_options, self.args.elmo_weights, -1)
        else:
            self.efml = EFML(self.args.elmo_weights)
            self.elmo = False
        #print(self.__dict__)
        if self.args.map_method == 'vecmap':
            self.mapper = Vecmap(vars(self.args))
        elif self.args.map_method == 'elmogan':
            self.mapper = Elmogan(vars(self.args))
        elif self.args.map_method == 'muse':
            self.mapper = Muse(vars(self.args))
        else:
            self.mapper = None
示例#2
0
文件: dep.py 项目: ericxsun/parser
    def _train(self, loader):
        self.model.train()

        bar, metric = progress_bar(loader), AttachmentMetric()

        for i, (words, texts, *feats, arcs, rels) in enumerate(bar, 1):
            word_mask = words.ne(self.args.pad_index)
            mask = word_mask if len(words.shape) < 3 else word_mask.any(-1)
            # ignore the first token of each sentence
            mask[:, 0] = 0
            s_arc, s_sib, s_rel = self.model(words, feats)
            loss, s_arc = self.model.loss(s_arc, s_sib, s_rel, arcs, rels, mask)
            loss = loss / self.args.update_steps
            loss.backward()
            nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip)
            if i % self.args.update_steps == 0:
                self.optimizer.step()
                self.scheduler.step()
                self.optimizer.zero_grad()

            arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask)
            if self.args.partial:
                mask &= arcs.ge(0)
            # ignore all punctuation if not specified
            if not self.args.punct:
                mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s]))
            metric(arc_preds, rel_preds, arcs, rels, mask)
            bar.set_postfix_str(f"lr: {self.scheduler.get_last_lr()[0]:.4e} - loss: {loss:.4f} - {metric}")
        logger.info(f"{bar.postfix}")
示例#3
0
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        if self.args.feat in ('char', 'bert'):
            self.WORD, self.FEAT = self.transform.FORM
        else:
            self.WORD, self.FEAT = self.transform.FORM, self.transform.CPOS
        self.ARC, self.REL = self.transform.HEAD, self.transform.DEPREL
        self.puncts = torch.tensor([i
                                    for s, i in self.WORD.vocab.stoi.items()
                                    if ispunct(s)]).to(self.args.device)
示例#4
0
def train(WORD, CHAR, ARC, REL, transform, encoder, epoch=60, word_dim=100):
    model = BiaffineDependencyModel(n_words=WORD.vocab.n_init,
                                    n_feats=len(CHAR.vocab),
                                    n_rels=len(REL.vocab),
                                    pad_index=WORD.pad_index,
                                    unk_index=WORD.unk_index,
                                    bos_index=WORD.bos_index,
                                    feat_pad_index=CHAR.pad_index,
                                    encoder=encoder,
                                    n_embed=word_dim)
    model.load_pretrained(WORD.embed)
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(device)
    model.to(device)

    puncts = torch.tensor(
        [i for s, i in WORD.vocab.stoi.items() if ispunct(s)]).to(device)

    train, dev, test = get_dataset(transform)
    # train.sentences = train.sentences[:30000]
    dev.sentences = dev.sentences[:200]
    test.sentences = test.sentences[:200]
    print('train sentences:%d dev sentences:%d test sentences:%d' %
          (len(train.sentences), len(dev.sentences), len(test.sentences)))
    if (encoder == 'lstm'):
        optimizer = Adam(model.parameters(),
                         lr=2e-3,
                         betas=(0.9, 0.9),
                         eps=1e-12)
    else:
        optimizer = ScheduledOptim(
            Adam(model.parameters(), betas=(0.9, 0.98), eps=1e-09), 2.0, 800,
            4000)

    train_parser(train,
                 dev,
                 test,
                 model,
                 optimizer,
                 transform,
                 WORD,
                 puncts,
                 encoder,
                 epochs=epoch,
                 path=encoder + '_model')
示例#5
0
文件: dep.py 项目: ericxsun/parser
    def _evaluate(self, loader):
        self.model.eval()

        total_loss, metric = 0, AttachmentMetric()

        for words, texts, *feats, arcs, sibs, rels in loader:
            word_mask = words.ne(self.args.pad_index)
            mask = word_mask if len(words.shape) < 3 else word_mask.any(-1)
            # ignore the first token of each sentence
            mask[:, 0] = 0
            s_arc, s_sib, s_rel = self.model(words, feats)
            loss, s_arc = self.model.loss(s_arc, s_sib, s_rel, arcs, sibs, rels, mask, self.args.mbr, self.args.partial)
            arc_preds, rel_preds = self.model.decode(s_arc, s_sib, s_rel, mask, self.args.tree, self.args.mbr, self.args.proj)
            if self.args.partial:
                mask &= arcs.ge(0)
            # ignore all punctuation if not specified
            if not self.args.punct:
                mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s]))
            total_loss += loss.item()
            metric(arc_preds, rel_preds, arcs, rels, mask)
        total_loss /= len(loader)

        return total_loss, metric