def test_coco_desktop_object(tmpdir): input_dir = Path( "tests" ) / "converter_test" / "COCO" / "input" / "fromSuperAnnotate" / "cats_dogs_desktop" out_dir = Path(tmpdir) / "coco_from_desktop" sa.export_annotation_format(input_dir, out_dir, "COCO", "object_test", "Vector", "object_detection", "Desktop")
def coco_desktop_object(tmpdir): out_dir = tmpdir / "coco_from_desktop" final_dir = tmpdir / "coco_to_Web" sa.export_annotation_format( "tests/converter_test/COCO/input/fromSuperAnnotate/cats_dogs_desktop", str(out_dir), "COCO", "object_test", "Vector", "object_detection", "Desktop") image_list = glob(str(out_dir / 'train_set' / '*.jpg')) for image in image_list: shutil.copy(image, out_dir / Path(image).name) shutil.rmtree(out_dir / 'train_set') sa.import_annotation_format(str(out_dir), str(final_dir), "COCO", "object_test_train", "Vector", "object_detection", "Web") project_name = "coco2sa_object_pipline" projects = sa.search_projects(project_name, True) if projects: sa.delete_project(projects[0]) project = sa.create_project(project_name, "converter vector", "Vector") sa.create_annotation_classes_from_classes_json( project, final_dir / "classes" / "classes.json") sa.upload_images_from_folder_to_project(project, final_dir) sa.upload_annotations_from_folder_to_project(project, final_dir) return 0
def test_instance_segmentation_sa2coco_vector(tmpdir): input_dir = Path( "tests" ) / "converter_test" / "COCO" / "input" / "fromSuperAnnotate" / "cats_dogs_vector_instance_segm" out_path = Path(tmpdir) / "fromSuperAnnotate" / "instance_test_vector" sa.export_annotation_format( input_dir, out_path, "COCO", "instance_test_vector", "Vector", "instance_segmentation" )
def test_keypoint_detection_sa2coco(tmpdir): input_dir = Path( "tests" ) / "converter_test" / "COCO" / "input" / "fromSuperAnnotate" / "cats_dogs_vector_keypoint_det" out_path = Path(tmpdir) / "fromSuperAnnotate" / "keypoint_test_vector" sa.export_annotation_format( input_dir, out_path, "COCO", "keypoint_test_vector", "Vector", "keypoint_detection" )
def test_panoptic_segmentation_sa2coco(tmpdir): input_dir = Path( "tests" ) / "converter_test" / "COCO" / "input" / "fromSuperAnnotate" / "cats_dogs_panoptic_segm" out_path = Path(tmpdir) / "fromSuperAnnotate" / "panoptic_test" sa.export_annotation_format( input_dir, out_path, "COCO", "panoptic_test", "Pixel", "panoptic_segmentation" )
def instance_segmentation_sa2coco_vector(tmpdir): out_path = tmpdir / "fromSuperAnnotate/instance_test_vector" try: sa.export_annotation_format( "tests/converter_test/COCO/input/fromSuperAnnotate/cats_dogs_vector_instance_segm", str(out_path), "COCO", "instance_test_vector", "Vector", "instance_segmentation") except Exception as e: return 1 return 0
def keypoint_detection_sa2coco(tmpdir): out_path = tmpdir / "fromSuperAnnotate/keypoint_test_vector" try: sa.export_annotation_format( "tests/converter_test/COCO/input/fromSuperAnnotate/cats_dogs_vector_keypoint_det", str(out_path), "COCO", "keypoint_test_vector", "Vector", "keypoint_detection") except Exception as e: return 1 return 0
def panoptic_segmentation_sa2coco(tmpdir): out_path = tmpdir / "fromSuperAnnotate/panoptic_test" try: sa.export_annotation_format( "tests/converter_test/COCO/input/fromSuperAnnotate/cats_dogs_panoptic_segm", str(out_path), "COCO", "panoptic_test", "Pixel", "panoptic_segmentation") except Exception as e: return 1 return 0
def test_sa_to_coco_to_sa(tmpdir): input_dir = Path("tests") / "sample_project_pixel" output1 = Path(tmpdir) / 'to_coco' output2 = Path(tmpdir) / 'to_sa' sa.export_annotation_format(input_dir, output1, "COCO", "object_test", "Pixel", "instance_segmentation", "Web") sa.import_annotation_format(output1, output2, "COCO", "object_test", "Pixel", "instance_segmentation", "Web", 'image_set') project_name = 'coco_pipeline_new' project = sa.search_projects(project_name, return_metadata=True) for pr in project: sa.delete_project(pr) project = sa.create_project(project_name, 'test_instane', 'Pixel') sa.upload_images_from_folder_to_project(project, output2) sa.create_annotation_classes_from_classes_json( project, output2 / "classes" / "classes.json") sa.upload_annotations_from_folder_to_project(project, output2)