def _init_graph(config, with_dataset=False): set_seed(config.get('seed', int.from_bytes(os.urandom(4), byteorder='big'))) n_gpus = get_num_gpus() logging.info('Number of GPUs detected: {}'.format(n_gpus)) model = get_model(config['model']['name'])(data={}, n_gpus=n_gpus, **config['model']) model.__enter__() if with_dataset: yield model else: yield model model.__exit__() tf.reset_default_graph()
def _init_graph(config, with_dataset=False): set_seed(config.get('seed', int.from_bytes(os.urandom(4), byteorder='big'))) n_gpus = len(os.environ['CUDA_VISIBLE_DEVICES'].split(',')) logging.info('Number of GPUs detected: {}'.format(n_gpus)) dataset = get_dataset(config['data']['name'])(**config['data']) model = get_model(config['model']['name'])( data={} if with_dataset else dataset.get_tf_datasets(), n_gpus=n_gpus, **config['model']) model.__enter__() if with_dataset: yield model, dataset else: yield model model.__exit__() tf.reset_default_graph()
from superpoint.models import get_model # noqa: E402 from superpoint.settings import EXPER_PATH # noqa: E402 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('config', type=str) parser.add_argument('export_name', type=str) args = parser.parse_args() export_name = args.export_name with open(args.config, 'r') as f: config = yaml.load(f) config['model']['data_format'] = 'channels_last' export_root_dir = Path(EXPER_PATH, 'saved_models') export_root_dir.mkdir(parents=True, exist_ok=True) export_dir = Path(export_root_dir, export_name) checkpoint_path = Path(EXPER_PATH, export_name) with get_model(config['model']['name'])(data_shape={ 'image': [None, None, None, 1] }, **config['model']) as net: net.load(str(checkpoint_path)) tf.saved_model.simple_save(net.sess, str(export_dir), inputs=net.pred_in, outputs=net.pred_out)