def test_to_and_from_json_convert_integers(self): # training data d = { "col1": [1, 2, 3], "col2": ["a", "a", "c"], "col3": [1, 1, 3], "col4": ["a", "b", "c"], } df = pd.DataFrame(data=d) cat1 = PreprocessingCategorical( df.columns, PreprocessingCategorical.CONVERT_INTEGER) cat1.fit(df) cat2 = PreprocessingCategorical( df.columns, PreprocessingCategorical.CONVERT_INTEGER) cat2.from_json(cat1.to_json()) df = cat2.transform(df) for col in ["col1", "col2", "col3", "col4"]: self.assertTrue(col in df.columns) self.assertEqual(df["col2"][0], 0) self.assertEqual(df["col2"][1], 0) self.assertEqual(df["col2"][2], 1) self.assertEqual(df["col4"][0], 0) self.assertEqual(df["col4"][1], 1) self.assertEqual(df["col4"][2], 2)
def test_fit_transform_integers_with_new_values(self): # training data d_train = { "col1": [1, 2, 3], "col2": ["a", "a", "c"], "col3": [1, 1, 3], "col4": ["a", "b", "c"], } df_train = pd.DataFrame(data=d_train) categorical = PreprocessingCategorical( df_train.columns, PreprocessingCategorical.CONVERT_INTEGER) categorical.fit(df_train) # testing data d = { "col1": [1, 2, 3], "col2": ["a", "d", "f"], "col3": [1, 1, 3], "col4": ["e", "b", "z"], } df = pd.DataFrame(data=d) df = categorical.transform(df) for col in ["col1", "col2", "col3", "col4"]: self.assertTrue(col in df.columns) self.assertEqual(df["col2"][0], 0) self.assertEqual(df["col2"][1], 2) # new values get higher indexes self.assertEqual(df["col2"][2], 3) # new values get higher indexes self.assertEqual(df["col4"][0], 3) # new values get higher indexes self.assertEqual(df["col4"][1], 1) self.assertEqual(df["col4"][2], 4) # new values get higher indexes
def fit_and_transform(self, X_train, y_train): logger.debug("Preprocessing.fit_and_transform") if y_train is not None: # target preprocessing # this must be used first, maybe we will drop some rows because of missing target values target_preprocessing = self._params.get("target_preprocessing") logger.debug( "target_preprocessing params: {}".format(target_preprocessing)) X_train, y_train = ExcludeRowsMissingTarget.transform( X_train, y_train) if PreprocessingCategorical.CONVERT_INTEGER in target_preprocessing: logger.debug("Convert target to integer") self._categorical_y = LabelEncoder() self._categorical_y.fit(y_train) y_train = pd.Series(self._categorical_y.transform(y_train)) if PreprocessingCategorical.CONVERT_ONE_HOT in target_preprocessing: logger.debug("Convert target to one-hot coding") self._categorical_y = LabelBinarizer() self._categorical_y.fit(pd.DataFrame({"target": y_train}), "target") y_train = self._categorical_y.transform( pd.DataFrame({"target": y_train}), "target") if Scale.SCALE_LOG_AND_NORMAL in target_preprocessing: logger.debug("Scale log and normal") self._scale_y = Scale(["target"], scale_method=Scale.SCALE_LOG_AND_NORMAL) y_train = pd.DataFrame({"target": y_train}) self._scale_y.fit(y_train) y_train = self._scale_y.transform(y_train) y_train = y_train["target"] if Scale.SCALE_NORMAL in target_preprocessing: logger.debug("Scale normal") self._scale_y = Scale(["target"], scale_method=Scale.SCALE_NORMAL) y_train = pd.DataFrame({"target": y_train}) self._scale_y.fit(y_train) y_train = self._scale_y.transform(y_train) y_train = y_train["target"] # columns preprocessing columns_preprocessing = self._params.get("columns_preprocessing") for column in columns_preprocessing: transforms = columns_preprocessing[column] # logger.debug("Preprocess column {} with: {}".format(column, transforms)) # remove empty or constant columns cols_to_remove = list( filter( lambda k: "remove_column" in columns_preprocessing[k], columns_preprocessing, )) if X_train is not None: X_train.drop(cols_to_remove, axis=1, inplace=True) self._remove_columns = cols_to_remove for missing_method in [PreprocessingMissingValues.FILL_NA_MEDIAN]: cols_to_process = list( filter( lambda k: missing_method in columns_preprocessing[k], columns_preprocessing, )) missing = PreprocessingMissingValues(cols_to_process, missing_method) missing.fit(X_train) X_train = missing.transform(X_train) self._missing_values += [missing] for convert_method in [PreprocessingCategorical.CONVERT_INTEGER]: cols_to_process = list( filter( lambda k: convert_method in columns_preprocessing[k], columns_preprocessing, )) convert = PreprocessingCategorical(cols_to_process, convert_method) convert.fit(X_train) X_train = convert.transform(X_train) self._categorical += [convert] # SCALE for scale_method in [Scale.SCALE_NORMAL, Scale.SCALE_LOG_AND_NORMAL]: cols_to_process = list( filter( lambda k: scale_method in columns_preprocessing[k], columns_preprocessing, )) if len(cols_to_process): scale = Scale(cols_to_process) scale.fit(X_train) X_train = scale.transform(X_train) self._scale += [scale] return X_train, y_train
def run(self, train_data=None, validation_data=None): log.debug("PreprocessingStep.run") X_train, y_train = None, None if train_data is not None: if "X" in train_data: X_train = train_data.get("X").copy() if "y" in train_data: y_train = train_data.get("y").copy() X_validation, y_validation = None, None if validation_data is not None: if "X" in validation_data: X_validation = validation_data.get("X").copy() if "y" in validation_data: y_validation = validation_data.get("y").copy() if y_train is not None: # target preprocessing # this must be used first, maybe we will drop some rows because of missing target values target_preprocessing = self._params.get("target_preprocessing") log.debug( "target_preprocessing -> {}".format(target_preprocessing)) # if PreprocessingMissingValues.NA_EXCLUDE in target_preprocessing: X_train, y_train = PreprocessingExcludeMissingValues.transform( X_train, y_train) if validation_data is not None: X_validation, y_validation = PreprocessingExcludeMissingValues.transform( X_validation, y_validation) if PreprocessingCategorical.CONVERT_INTEGER in target_preprocessing: self._categorical_y = LabelEncoder() self._categorical_y.fit(y_train) y_train = pd.Series(self._categorical_y.transform(y_train)) if y_validation is not None and self._categorical_y is not None: y_validation = pd.Series( self._categorical_y.transform(y_validation)) if PreprocessingScale.SCALE_LOG_AND_NORMAL in target_preprocessing: log.error("not implemented SCALE_LOG_AND_NORMAL") raise Exception("not implemented SCALE_LOG_AND_NORMAL") if PreprocessingScale.SCALE_NORMAL in target_preprocessing: log.error("not implemented SCALE_NORMAL") raise Exception("not implemented SCALE_NORMAL") # columns preprocessing columns_preprocessing = self._params.get("columns_preprocessing") for column in columns_preprocessing: transforms = columns_preprocessing[column] log.debug("Preprocess column -> {}, {}".format(column, transforms)) # remove empty or constant columns cols_to_remove = list( filter( lambda k: "remove_column" in columns_preprocessing[k], columns_preprocessing, )) if X_train is not None: X_train.drop(cols_to_remove, axis=1, inplace=True) if X_validation is not None: X_validation.drop(cols_to_remove, axis=1, inplace=True) self._remove_columns = cols_to_remove for missing_method in [PreprocessingMissingValues.FILL_NA_MEDIAN]: cols_to_process = list( filter( lambda k: missing_method in columns_preprocessing[k], columns_preprocessing, )) missing = PreprocessingMissingValues(cols_to_process, missing_method) missing.fit(X_train) X_train = missing.transform(X_train) if X_validation is not None: X_validation = missing.transform(X_validation) self._missing_values += [missing] for convert_method in [PreprocessingCategorical.CONVERT_INTEGER]: cols_to_process = list( filter( lambda k: convert_method in columns_preprocessing[k], columns_preprocessing, )) convert = PreprocessingCategorical(cols_to_process, convert_method) convert.fit(X_train) X_train = convert.transform(X_train) if X_validation is not None: X_validation = convert.transform(X_validation) self._categorical += [convert] # SCALE for scale_method in [PreprocessingScale.SCALE_NORMAL]: cols_to_process = list( filter( lambda k: scale_method in columns_preprocessing[k], columns_preprocessing, )) if len(cols_to_process): scale = PreprocessingScale(cols_to_process) scale.fit(X_train) X_train = scale.transform(X_train) if X_validation is not None: X_validation = scale.transform(X_validation) self._scale += [scale] return { "X": X_train, "y": y_train }, { "X": X_validation, "y": y_validation }
def fit_and_transform(self, X_train, y_train, sample_weight=None): logger.debug("Preprocessing.fit_and_transform") if y_train is not None: # target preprocessing # this must be used first, maybe we will drop some rows because of missing target values target_preprocessing = self._params.get("target_preprocessing") logger.debug( "target_preprocessing params: {}".format(target_preprocessing)) X_train, y_train, sample_weight = ExcludeRowsMissingTarget.transform( X_train, y_train, sample_weight) if PreprocessingCategorical.CONVERT_INTEGER in target_preprocessing: logger.debug("Convert target to integer") self._categorical_y = LabelEncoder(try_to_fit_numeric=True) self._categorical_y.fit(y_train) y_train = pd.Series(self._categorical_y.transform(y_train)) if PreprocessingCategorical.CONVERT_ONE_HOT in target_preprocessing: logger.debug("Convert target to one-hot coding") self._categorical_y = LabelBinarizer() self._categorical_y.fit(pd.DataFrame({"target": y_train}), "target") y_train = self._categorical_y.transform( pd.DataFrame({"target": y_train}), "target") if Scale.SCALE_LOG_AND_NORMAL in target_preprocessing: logger.debug("Scale log and normal") self._scale_y = Scale(["target"], scale_method=Scale.SCALE_LOG_AND_NORMAL) y_train = pd.DataFrame({"target": y_train}) self._scale_y.fit(y_train) y_train = self._scale_y.transform(y_train) y_train = y_train["target"] if Scale.SCALE_NORMAL in target_preprocessing: logger.debug("Scale normal") self._scale_y = Scale(["target"], scale_method=Scale.SCALE_NORMAL) y_train = pd.DataFrame({"target": y_train}) self._scale_y.fit(y_train) y_train = self._scale_y.transform(y_train) y_train = y_train["target"] # columns preprocessing columns_preprocessing = self._params.get("columns_preprocessing") for column in columns_preprocessing: transforms = columns_preprocessing[column] # logger.debug("Preprocess column {} with: {}".format(column, transforms)) # remove empty or constant columns cols_to_remove = list( filter( lambda k: "remove_column" in columns_preprocessing[k], columns_preprocessing, )) if X_train is not None: X_train.drop(cols_to_remove, axis=1, inplace=True) self._remove_columns = cols_to_remove numeric_cols = [] # get numeric cols before text transformations # needed for golden features if X_train is not None and ("golden_features" in self._params or "kmeans_features" in self._params): numeric_cols = X_train.select_dtypes( include="number").columns.tolist() # there can be missing values in the text data, # but we don't want to handle it by fill missing methods # zeros will be imputed by text_transform method cols_to_process = list( filter( lambda k: "text_transform" in columns_preprocessing[k], columns_preprocessing, )) new_text_columns = [] for col in cols_to_process: t = TextTransformer() t.fit(X_train, col) X_train = t.transform(X_train) self._text_transforms += [t] new_text_columns += t._new_columns # end of text transform for missing_method in [PreprocessingMissingValues.FILL_NA_MEDIAN]: cols_to_process = list( filter( lambda k: missing_method in columns_preprocessing[k], columns_preprocessing, )) missing = PreprocessingMissingValues(cols_to_process, missing_method) missing.fit(X_train) X_train = missing.transform(X_train) self._missing_values += [missing] # golden features golden_columns = [] if "golden_features" in self._params: results_path = self._params["golden_features"]["results_path"] ml_task = self._params["golden_features"]["ml_task"] self._golden_features = GoldenFeaturesTransformer( results_path, ml_task) self._golden_features.fit(X_train[numeric_cols], y_train) X_train = self._golden_features.transform(X_train) golden_columns = self._golden_features._new_columns kmeans_columns = [] if "kmeans_features" in self._params: results_path = self._params["kmeans_features"]["results_path"] self._kmeans = KMeansTransformer(results_path, self._model_name, self._k_fold) self._kmeans.fit(X_train[numeric_cols], y_train) X_train = self._kmeans.transform(X_train) kmeans_columns = self._kmeans._new_features for convert_method in [ PreprocessingCategorical.CONVERT_INTEGER, PreprocessingCategorical.CONVERT_ONE_HOT, PreprocessingCategorical.CONVERT_LOO, ]: cols_to_process = list( filter( lambda k: convert_method in columns_preprocessing[k], columns_preprocessing, )) convert = PreprocessingCategorical(cols_to_process, convert_method) convert.fit(X_train, y_train) X_train = convert.transform(X_train) self._categorical += [convert] # datetime transform cols_to_process = list( filter( lambda k: "datetime_transform" in columns_preprocessing[k], columns_preprocessing, )) new_datetime_columns = [] for col in cols_to_process: t = DateTimeTransformer() t.fit(X_train, col) X_train = t.transform(X_train) self._datetime_transforms += [t] new_datetime_columns += t._new_columns # SCALE for scale_method in [Scale.SCALE_NORMAL, Scale.SCALE_LOG_AND_NORMAL]: cols_to_process = list( filter( lambda k: scale_method in columns_preprocessing[k], columns_preprocessing, )) if (len(cols_to_process) and len(new_datetime_columns) and scale_method == Scale.SCALE_NORMAL): cols_to_process += new_datetime_columns if (len(cols_to_process) and len(new_text_columns) and scale_method == Scale.SCALE_NORMAL): cols_to_process += new_text_columns if (len(cols_to_process) and len(golden_columns) and scale_method == Scale.SCALE_NORMAL): cols_to_process += golden_columns if (len(cols_to_process) and len(kmeans_columns) and scale_method == Scale.SCALE_NORMAL): cols_to_process += kmeans_columns if len(cols_to_process): scale = Scale(cols_to_process) scale.fit(X_train) X_train = scale.transform(X_train) self._scale += [scale] if self._add_random_feature: # -1, 1, with 0 mean X_train["random_feature"] = np.random.rand( X_train.shape[0]) * 2.0 - 1.0 if self._drop_features: available_cols = X_train.columns.tolist() drop_cols = [c for c in self._drop_features if c in available_cols] if len(drop_cols) == X_train.shape[1]: raise AutoMLException( "All features are droppped! Your data looks like random data." ) if drop_cols: X_train.drop(drop_cols, axis=1, inplace=True) self._drop_features = drop_cols if X_train is not None: # there can be catagorical columns (in CatBoost) which cant be clipped numeric_cols = X_train.select_dtypes( include="number").columns.tolist() X_train[numeric_cols] = X_train[numeric_cols].clip( lower=np.finfo(np.float32).min + 1000, upper=np.finfo(np.float32).max - 1000, ) return X_train, y_train, sample_weight
def fit_and_transform(self, X_train, y_train): logger.debug("Preprocessing.fit_and_transform") if y_train is not None: # target preprocessing # this must be used first, maybe we will drop some rows because of missing target values target_preprocessing = self._params.get("target_preprocessing") logger.debug("target_preprocessing params: {}".format(target_preprocessing)) X_train, y_train = ExcludeRowsMissingTarget.transform(X_train, y_train) if PreprocessingCategorical.CONVERT_INTEGER in target_preprocessing: logger.debug("Convert target to integer") self._categorical_y = LabelEncoder() self._categorical_y.fit(y_train) y_train = pd.Series(self._categorical_y.transform(y_train)) if PreprocessingCategorical.CONVERT_ONE_HOT in target_preprocessing: logger.debug("Convert target to one-hot coding") self._categorical_y = LabelBinarizer() self._categorical_y.fit(pd.DataFrame({"target": y_train}), "target") y_train = self._categorical_y.transform( pd.DataFrame({"target": y_train}), "target" ) if Scale.SCALE_LOG_AND_NORMAL in target_preprocessing: logger.debug("Scale log and normal") self._scale_y = Scale( ["target"], scale_method=Scale.SCALE_LOG_AND_NORMAL ) y_train = pd.DataFrame({"target": y_train}) self._scale_y.fit(y_train) y_train = self._scale_y.transform(y_train) y_train = y_train["target"] if Scale.SCALE_NORMAL in target_preprocessing: logger.debug("Scale normal") self._scale_y = Scale(["target"], scale_method=Scale.SCALE_NORMAL) y_train = pd.DataFrame({"target": y_train}) self._scale_y.fit(y_train) y_train = self._scale_y.transform(y_train) y_train = y_train["target"] # columns preprocessing columns_preprocessing = self._params.get("columns_preprocessing") for column in columns_preprocessing: transforms = columns_preprocessing[column] # logger.debug("Preprocess column {} with: {}".format(column, transforms)) # remove empty or constant columns cols_to_remove = list( filter( lambda k: "remove_column" in columns_preprocessing[k], columns_preprocessing, ) ) if X_train is not None: X_train.drop(cols_to_remove, axis=1, inplace=True) self._remove_columns = cols_to_remove # there can be missing values in the text data, # but we don't want to handle it by fill missing methods # zeros will be imputed by text_transform method cols_to_process = list( filter( lambda k: "text_transform" in columns_preprocessing[k], columns_preprocessing, ) ) new_text_columns = [] for col in cols_to_process: t = TextTransformer() t.fit(X_train, col) X_train = t.transform(X_train) self._text_transforms += [t] new_text_columns += t._new_columns # end of text transform for missing_method in [PreprocessingMissingValues.FILL_NA_MEDIAN]: cols_to_process = list( filter( lambda k: missing_method in columns_preprocessing[k], columns_preprocessing, ) ) missing = PreprocessingMissingValues(cols_to_process, missing_method) missing.fit(X_train) X_train = missing.transform(X_train) self._missing_values += [missing] for convert_method in [ PreprocessingCategorical.CONVERT_INTEGER, PreprocessingCategorical.CONVERT_ONE_HOT, ]: cols_to_process = list( filter( lambda k: convert_method in columns_preprocessing[k], columns_preprocessing, ) ) convert = PreprocessingCategorical(cols_to_process, convert_method) convert.fit(X_train) X_train = convert.transform(X_train) self._categorical += [convert] # datetime transform cols_to_process = list( filter( lambda k: "datetime_transform" in columns_preprocessing[k], columns_preprocessing, ) ) new_datetime_columns = [] for col in cols_to_process: t = DateTimeTransformer() t.fit(X_train, col) X_train = t.transform(X_train) self._datetime_transforms += [t] new_datetime_columns += t._new_columns # SCALE for scale_method in [Scale.SCALE_NORMAL, Scale.SCALE_LOG_AND_NORMAL]: cols_to_process = list( filter( lambda k: scale_method in columns_preprocessing[k], columns_preprocessing, ) ) if ( len(cols_to_process) and len(new_datetime_columns) and scale_method == Scale.SCALE_NORMAL ): cols_to_process += new_datetime_columns if ( len(cols_to_process) and len(new_text_columns) and scale_method == Scale.SCALE_NORMAL ): cols_to_process += new_text_columns if len(cols_to_process): scale = Scale(cols_to_process) scale.fit(X_train) X_train = scale.transform(X_train) self._scale += [scale] return X_train, y_train