def test_fit_log_and_normal(self): # training data d = { "col1": [12, 13, 3, 4, 5, 6, 7, 8000, 9000, 10000.0], "col2": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30.0], "col3": [12, 2, 3, 4, 5, 6, 7, 8000, 9000, 10000.0], } df = pd.DataFrame(data=d) scale = Scale(["col1", "col3"], scale_method=Scale.SCALE_LOG_AND_NORMAL) scale.fit(df) df = scale.transform(df) val = float(df["col1"][0]) assert_almost_equal(np.mean(df["col1"]), 0) self.assertTrue( df["col1"][0] + 0.01 < df["col1"][1] ) # in case of wrong scaling the small values will be squeezed df = scale.inverse_transform(df) scale2 = Scale() scale_params = scale.to_json() scale2.from_json(scale_params) df = scale2.transform(df) assert_almost_equal(df["col1"][0], val)
def test_fit(self): # training data d = { "col1": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10.0], "col2": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30.0], } df = pd.DataFrame(data=d) scale = Scale(["col1"]) scale.fit(df) df = scale.transform(df) assert_almost_equal(np.mean(df["col1"]), 0) assert_almost_equal(np.mean(df["col2"]), 25.5) df = scale.inverse_transform(df) assert_almost_equal(df["col1"][0], 1) assert_almost_equal(df["col1"][1], 2)
def test_to_and_from_json(self): # training data d = { "col1": [1, 2, 3, 4, 5, 6, 7, 8.0, 9, 10], "col2": [21, 22.0, 23, 24, 25, 26, 27, 28, 29, 30], } df = pd.DataFrame(data=d) scale = Scale(["col1"]) scale.fit(df) # do not transform assert_almost_equal(np.mean(df["col1"]), 5.5) assert_almost_equal(np.mean(df["col2"]), 25.5) # to and from json json_data = scale.to_json() scale2 = Scale() scale2.from_json(json_data) # transform with loaded scaler df = scale2.transform(df) assert_almost_equal(np.mean(df["col1"]), 0) assert_almost_equal(np.mean(df["col2"]), 25.5)
def fit_and_transform(self, X_train, y_train): logger.debug("Preprocessing.fit_and_transform") if y_train is not None: # target preprocessing # this must be used first, maybe we will drop some rows because of missing target values target_preprocessing = self._params.get("target_preprocessing") logger.debug( "target_preprocessing params: {}".format(target_preprocessing)) X_train, y_train = ExcludeRowsMissingTarget.transform( X_train, y_train) if PreprocessingCategorical.CONVERT_INTEGER in target_preprocessing: logger.debug("Convert target to integer") self._categorical_y = LabelEncoder() self._categorical_y.fit(y_train) y_train = pd.Series(self._categorical_y.transform(y_train)) if PreprocessingCategorical.CONVERT_ONE_HOT in target_preprocessing: logger.debug("Convert target to one-hot coding") self._categorical_y = LabelBinarizer() self._categorical_y.fit(pd.DataFrame({"target": y_train}), "target") y_train = self._categorical_y.transform( pd.DataFrame({"target": y_train}), "target") if Scale.SCALE_LOG_AND_NORMAL in target_preprocessing: logger.debug("Scale log and normal") self._scale_y = Scale(["target"], scale_method=Scale.SCALE_LOG_AND_NORMAL) y_train = pd.DataFrame({"target": y_train}) self._scale_y.fit(y_train) y_train = self._scale_y.transform(y_train) y_train = y_train["target"] if Scale.SCALE_NORMAL in target_preprocessing: logger.debug("Scale normal") self._scale_y = Scale(["target"], scale_method=Scale.SCALE_NORMAL) y_train = pd.DataFrame({"target": y_train}) self._scale_y.fit(y_train) y_train = self._scale_y.transform(y_train) y_train = y_train["target"] # columns preprocessing columns_preprocessing = self._params.get("columns_preprocessing") for column in columns_preprocessing: transforms = columns_preprocessing[column] # logger.debug("Preprocess column {} with: {}".format(column, transforms)) # remove empty or constant columns cols_to_remove = list( filter( lambda k: "remove_column" in columns_preprocessing[k], columns_preprocessing, )) if X_train is not None: X_train.drop(cols_to_remove, axis=1, inplace=True) self._remove_columns = cols_to_remove for missing_method in [PreprocessingMissingValues.FILL_NA_MEDIAN]: cols_to_process = list( filter( lambda k: missing_method in columns_preprocessing[k], columns_preprocessing, )) missing = PreprocessingMissingValues(cols_to_process, missing_method) missing.fit(X_train) X_train = missing.transform(X_train) self._missing_values += [missing] for convert_method in [PreprocessingCategorical.CONVERT_INTEGER]: cols_to_process = list( filter( lambda k: convert_method in columns_preprocessing[k], columns_preprocessing, )) convert = PreprocessingCategorical(cols_to_process, convert_method) convert.fit(X_train) X_train = convert.transform(X_train) self._categorical += [convert] # SCALE for scale_method in [Scale.SCALE_NORMAL, Scale.SCALE_LOG_AND_NORMAL]: cols_to_process = list( filter( lambda k: scale_method in columns_preprocessing[k], columns_preprocessing, )) if len(cols_to_process): scale = Scale(cols_to_process) scale.fit(X_train) X_train = scale.transform(X_train) self._scale += [scale] return X_train, y_train
class Preprocessing(object): def __init__( self, preprocessing_params={ "target_preprocessing": [], "columns_preprocessing": {} }, ): self._params = preprocessing_params if "target_preprocessing" not in preprocessing_params: self._params["target_preprocessing"] = [] if "columns_preprocessing" not in preprocessing_params: self._params["columns_preprocessing"] = {} # preprocssing step attributes self._categorical_y = None self._scale_y = None self._missing_values = [] self._categorical = [] self._scale = [] self._remove_columns = [] def _exclude_missing_targets(self, X=None, y=None): # check if there are missing values in target column if y is None: return X, y y_missing = pd.isnull(y) if np.sum(np.array(y_missing)) == 0: return X, y y = y.drop(y.index[y_missing]) y.index = range(y.shape[0]) if X is not None: X = X.drop(X.index[y_missing]) X.index = range(X.shape[0]) return X, y # fit and transform def fit_and_transform(self, X_train, y_train): logger.debug("Preprocessing.fit_and_transform") if y_train is not None: # target preprocessing # this must be used first, maybe we will drop some rows because of missing target values target_preprocessing = self._params.get("target_preprocessing") logger.debug( "target_preprocessing params: {}".format(target_preprocessing)) X_train, y_train = ExcludeRowsMissingTarget.transform( X_train, y_train) if PreprocessingCategorical.CONVERT_INTEGER in target_preprocessing: logger.debug("Convert target to integer") self._categorical_y = LabelEncoder() self._categorical_y.fit(y_train) y_train = pd.Series(self._categorical_y.transform(y_train)) if PreprocessingCategorical.CONVERT_ONE_HOT in target_preprocessing: logger.debug("Convert target to one-hot coding") self._categorical_y = LabelBinarizer() self._categorical_y.fit(pd.DataFrame({"target": y_train}), "target") y_train = self._categorical_y.transform( pd.DataFrame({"target": y_train}), "target") if Scale.SCALE_LOG_AND_NORMAL in target_preprocessing: logger.debug("Scale log and normal") self._scale_y = Scale(["target"], scale_method=Scale.SCALE_LOG_AND_NORMAL) y_train = pd.DataFrame({"target": y_train}) self._scale_y.fit(y_train) y_train = self._scale_y.transform(y_train) y_train = y_train["target"] if Scale.SCALE_NORMAL in target_preprocessing: logger.debug("Scale normal") self._scale_y = Scale(["target"], scale_method=Scale.SCALE_NORMAL) y_train = pd.DataFrame({"target": y_train}) self._scale_y.fit(y_train) y_train = self._scale_y.transform(y_train) y_train = y_train["target"] # columns preprocessing columns_preprocessing = self._params.get("columns_preprocessing") for column in columns_preprocessing: transforms = columns_preprocessing[column] # logger.debug("Preprocess column {} with: {}".format(column, transforms)) # remove empty or constant columns cols_to_remove = list( filter( lambda k: "remove_column" in columns_preprocessing[k], columns_preprocessing, )) if X_train is not None: X_train.drop(cols_to_remove, axis=1, inplace=True) self._remove_columns = cols_to_remove for missing_method in [PreprocessingMissingValues.FILL_NA_MEDIAN]: cols_to_process = list( filter( lambda k: missing_method in columns_preprocessing[k], columns_preprocessing, )) missing = PreprocessingMissingValues(cols_to_process, missing_method) missing.fit(X_train) X_train = missing.transform(X_train) self._missing_values += [missing] for convert_method in [PreprocessingCategorical.CONVERT_INTEGER]: cols_to_process = list( filter( lambda k: convert_method in columns_preprocessing[k], columns_preprocessing, )) convert = PreprocessingCategorical(cols_to_process, convert_method) convert.fit(X_train) X_train = convert.transform(X_train) self._categorical += [convert] # SCALE for scale_method in [Scale.SCALE_NORMAL, Scale.SCALE_LOG_AND_NORMAL]: cols_to_process = list( filter( lambda k: scale_method in columns_preprocessing[k], columns_preprocessing, )) if len(cols_to_process): scale = Scale(cols_to_process) scale.fit(X_train) X_train = scale.transform(X_train) self._scale += [scale] return X_train, y_train def transform(self, X_validation, y_validation): logger.debug("Preprocessing.transform") # doing copy to avoid SettingWithCopyWarning if X_validation is not None: X_validation = X_validation.copy(deep=False) if y_validation is not None: y_validation = y_validation.copy(deep=False) # target preprocessing # this must be used first, maybe we will drop some rows because of missing target values if y_validation is not None: target_preprocessing = self._params.get("target_preprocessing") logger.debug( "target_preprocessing -> {}".format(target_preprocessing)) X_validation, y_validation = ExcludeRowsMissingTarget.transform( X_validation, y_validation) if PreprocessingCategorical.CONVERT_INTEGER in target_preprocessing: if y_validation is not None and self._categorical_y is not None: y_validation = pd.Series( self._categorical_y.transform(y_validation)) if PreprocessingCategorical.CONVERT_ONE_HOT in target_preprocessing: if y_validation is not None and self._categorical_y is not None: y_validation = self._categorical_y.transform( pd.DataFrame({"target": y_validation}), "target") if Scale.SCALE_LOG_AND_NORMAL in target_preprocessing: if self._scale_y is not None and y_validation is not None: logger.debug("Transform log and normalize") y_validation = pd.DataFrame({"target": y_validation}) y_validation = self._scale_y.transform(y_validation) y_validation = y_validation["target"] if Scale.SCALE_NORMAL in target_preprocessing: if self._scale_y is not None and y_validation is not None: logger.debug("Transform normalize") y_validation = pd.DataFrame({"target": y_validation}) y_validation = self._scale_y.transform(y_validation) y_validation = y_validation["target"] # columns preprocessing if len(self._remove_columns) and X_validation is not None: cols_to_remove = [ col for col in X_validation.columns if col in self._remove_columns ] X_validation.drop(cols_to_remove, axis=1, inplace=True) for missing in self._missing_values: if X_validation is not None and missing is not None: X_validation = missing.transform(X_validation) # to be sure that all missing are filled # in case new data there can be gaps! if (X_validation is not None and np.sum(np.sum(pd.isnull(X_validation))) > 0 and len(self._params["columns_preprocessing"]) > 0): # there is something missing, fill it # we should notice user about it! warnings.warn( "There are columns {} with missing values which didnt have missing values in train dataset." .format( list(X_validation.columns[np.where( np.sum(pd.isnull(X_validation)))]))) missing = PreprocessingMissingValues( X_validation.columns, PreprocessingMissingValues.FILL_NA_MEDIAN) missing.fit(X_validation) X_validation = missing.transform(X_validation) for convert in self._categorical: if X_validation is not None and convert is not None: X_validation = convert.transform(X_validation) for scale in self._scale: if X_validation is not None and scale is not None: X_validation = scale.transform(X_validation) return X_validation, y_validation def inverse_scale_target(self, y): if self._scale_y is not None: y = pd.DataFrame({"target": y}) y = self._scale_y.inverse_transform(y) y = y["target"] return y def inverse_categorical_target(self, y): if self._categorical_y is not None: y = self._categorical_y.inverse_transform( pd.DataFrame({"target": np.array(y)})) y = y.astype(str) return y def get_target_class_names(self): pos_label, neg_label = "1", "0" if self._categorical_y is not None: if self._params["ml_task"] == BINARY_CLASSIFICATION: # binary classification for label, value in self._categorical_y.to_json().items(): if value == 1: pos_label = label else: neg_label = label return [neg_label, pos_label] else: # multiclass classification # logger.debug(self._categorical_y.to_json()) if "unique_values" not in self._categorical_y.to_json(): labels = dict( (v, k) for k, v in self._categorical_y.to_json().items()) else: labels = { i: v for i, v in enumerate(self._categorical_y.to_json() ["unique_values"]) } return list(labels.values()) else: # self._categorical_y is None if "ml_task" in self._params: if self._params["ml_task"] == BINARY_CLASSIFICATION: return ["0", "1"] return [] def prepare_target_labels(self, y): pos_label, neg_label = "1", "0" if self._categorical_y is not None: if len(y.shape) == 1: # binary classification for label, value in self._categorical_y.to_json().items(): if value == 1: pos_label = label else: neg_label = label # threshold is applied in AutoML class return pd.DataFrame({ "prediction_{}".format(neg_label): 1 - y, "prediction_{}".format(pos_label): y, }) else: # multiclass classification if "unique_values" not in self._categorical_y.to_json(): labels = dict( (v, k) for k, v in self._categorical_y.to_json().items()) else: labels = { i: v for i, v in enumerate(self._categorical_y.to_json() ["unique_values"]) } d = {} cols = [] for i in range(y.shape[1]): d["prediction_{}".format(labels[i])] = y[:, i] cols += ["prediction_{}".format(labels[i])] df = pd.DataFrame(d) df["label"] = np.argmax(np.array(df[cols]), axis=1) df["label"] = df["label"].map(labels) return df else: # self._categorical_y is None if "ml_task" in self._params: if self._params["ml_task"] == BINARY_CLASSIFICATION: return pd.DataFrame({ "prediction_0": 1 - y, "prediction_1": y }) elif self._params["ml_task"] == MULTICLASS_CLASSIFICATION: return pd.DataFrame( data=y, columns=[ "prediction_{}".format(i) for i in range(y.shape[1]) ], ) return pd.DataFrame({"prediction": y}) def to_json(self): preprocessing_params = {} if self._remove_columns: preprocessing_params["remove_columns"] = self._remove_columns if self._missing_values is not None and len(self._missing_values): mvs = [] # refactor for mv in self._missing_values: if mv.to_json(): mvs += [mv.to_json()] if mvs: preprocessing_params["missing_values"] = mvs if self._categorical is not None and len(self._categorical): cats = [] # refactor for cat in self._categorical: if cat.to_json(): cats += [cat.to_json()] if cats: preprocessing_params["categorical"] = cats if self._scale is not None and len(self._scale): scs = [sc.to_json() for sc in self._scale if sc.to_json()] if scs: preprocessing_params["scale"] = scs if self._categorical_y is not None: cat_y = self._categorical_y.to_json() if cat_y: preprocessing_params["categorical_y"] = cat_y if self._scale_y is not None: preprocessing_params["scale_y"] = self._scale_y.to_json() if "ml_task" in self._params: preprocessing_params["ml_task"] = self._params["ml_task"] return preprocessing_params def from_json(self, data_json): if "remove_columns" in data_json: self._remove_columns = data_json.get("remove_columns", []) if "missing_values" in data_json: self._missing_values = [] for mv_data in data_json["missing_values"]: mv = PreprocessingMissingValues() mv.from_json(mv_data) self._missing_values += [mv] if "categorical" in data_json: self._categorical = [] for cat_data in data_json["categorical"]: cat = PreprocessingCategorical() cat.from_json(cat_data) self._categorical += [cat] if "scale" in data_json: self._scale = [] for scale_data in data_json["scale"]: sc = Scale() sc.from_json(scale_data) self._scale += [sc] if "categorical_y" in data_json: if "new_columns" in data_json["categorical_y"]: self._categorical_y = LabelBinarizer() else: self._categorical_y = LabelEncoder() self._categorical_y.from_json(data_json["categorical_y"]) if "scale_y" in data_json: self._scale_y = Scale() self._scale_y.from_json(data_json["scale_y"]) if "ml_task" in data_json: self._params["ml_task"] = data_json["ml_task"]
def fit_and_transform(self, X_train, y_train, sample_weight=None): logger.debug("Preprocessing.fit_and_transform") if y_train is not None: # target preprocessing # this must be used first, maybe we will drop some rows because of missing target values target_preprocessing = self._params.get("target_preprocessing") logger.debug( "target_preprocessing params: {}".format(target_preprocessing)) X_train, y_train, sample_weight = ExcludeRowsMissingTarget.transform( X_train, y_train, sample_weight) if PreprocessingCategorical.CONVERT_INTEGER in target_preprocessing: logger.debug("Convert target to integer") self._categorical_y = LabelEncoder(try_to_fit_numeric=True) self._categorical_y.fit(y_train) y_train = pd.Series(self._categorical_y.transform(y_train)) if PreprocessingCategorical.CONVERT_ONE_HOT in target_preprocessing: logger.debug("Convert target to one-hot coding") self._categorical_y = LabelBinarizer() self._categorical_y.fit(pd.DataFrame({"target": y_train}), "target") y_train = self._categorical_y.transform( pd.DataFrame({"target": y_train}), "target") if Scale.SCALE_LOG_AND_NORMAL in target_preprocessing: logger.debug("Scale log and normal") self._scale_y = Scale(["target"], scale_method=Scale.SCALE_LOG_AND_NORMAL) y_train = pd.DataFrame({"target": y_train}) self._scale_y.fit(y_train) y_train = self._scale_y.transform(y_train) y_train = y_train["target"] if Scale.SCALE_NORMAL in target_preprocessing: logger.debug("Scale normal") self._scale_y = Scale(["target"], scale_method=Scale.SCALE_NORMAL) y_train = pd.DataFrame({"target": y_train}) self._scale_y.fit(y_train) y_train = self._scale_y.transform(y_train) y_train = y_train["target"] # columns preprocessing columns_preprocessing = self._params.get("columns_preprocessing") for column in columns_preprocessing: transforms = columns_preprocessing[column] # logger.debug("Preprocess column {} with: {}".format(column, transforms)) # remove empty or constant columns cols_to_remove = list( filter( lambda k: "remove_column" in columns_preprocessing[k], columns_preprocessing, )) if X_train is not None: X_train.drop(cols_to_remove, axis=1, inplace=True) self._remove_columns = cols_to_remove numeric_cols = [] # get numeric cols before text transformations # needed for golden features if X_train is not None and ("golden_features" in self._params or "kmeans_features" in self._params): numeric_cols = X_train.select_dtypes( include="number").columns.tolist() # there can be missing values in the text data, # but we don't want to handle it by fill missing methods # zeros will be imputed by text_transform method cols_to_process = list( filter( lambda k: "text_transform" in columns_preprocessing[k], columns_preprocessing, )) new_text_columns = [] for col in cols_to_process: t = TextTransformer() t.fit(X_train, col) X_train = t.transform(X_train) self._text_transforms += [t] new_text_columns += t._new_columns # end of text transform for missing_method in [PreprocessingMissingValues.FILL_NA_MEDIAN]: cols_to_process = list( filter( lambda k: missing_method in columns_preprocessing[k], columns_preprocessing, )) missing = PreprocessingMissingValues(cols_to_process, missing_method) missing.fit(X_train) X_train = missing.transform(X_train) self._missing_values += [missing] # golden features golden_columns = [] if "golden_features" in self._params: results_path = self._params["golden_features"]["results_path"] ml_task = self._params["golden_features"]["ml_task"] self._golden_features = GoldenFeaturesTransformer( results_path, ml_task) self._golden_features.fit(X_train[numeric_cols], y_train) X_train = self._golden_features.transform(X_train) golden_columns = self._golden_features._new_columns kmeans_columns = [] if "kmeans_features" in self._params: results_path = self._params["kmeans_features"]["results_path"] self._kmeans = KMeansTransformer(results_path, self._model_name, self._k_fold) self._kmeans.fit(X_train[numeric_cols], y_train) X_train = self._kmeans.transform(X_train) kmeans_columns = self._kmeans._new_features for convert_method in [ PreprocessingCategorical.CONVERT_INTEGER, PreprocessingCategorical.CONVERT_ONE_HOT, PreprocessingCategorical.CONVERT_LOO, ]: cols_to_process = list( filter( lambda k: convert_method in columns_preprocessing[k], columns_preprocessing, )) convert = PreprocessingCategorical(cols_to_process, convert_method) convert.fit(X_train, y_train) X_train = convert.transform(X_train) self._categorical += [convert] # datetime transform cols_to_process = list( filter( lambda k: "datetime_transform" in columns_preprocessing[k], columns_preprocessing, )) new_datetime_columns = [] for col in cols_to_process: t = DateTimeTransformer() t.fit(X_train, col) X_train = t.transform(X_train) self._datetime_transforms += [t] new_datetime_columns += t._new_columns # SCALE for scale_method in [Scale.SCALE_NORMAL, Scale.SCALE_LOG_AND_NORMAL]: cols_to_process = list( filter( lambda k: scale_method in columns_preprocessing[k], columns_preprocessing, )) if (len(cols_to_process) and len(new_datetime_columns) and scale_method == Scale.SCALE_NORMAL): cols_to_process += new_datetime_columns if (len(cols_to_process) and len(new_text_columns) and scale_method == Scale.SCALE_NORMAL): cols_to_process += new_text_columns if (len(cols_to_process) and len(golden_columns) and scale_method == Scale.SCALE_NORMAL): cols_to_process += golden_columns if (len(cols_to_process) and len(kmeans_columns) and scale_method == Scale.SCALE_NORMAL): cols_to_process += kmeans_columns if len(cols_to_process): scale = Scale(cols_to_process) scale.fit(X_train) X_train = scale.transform(X_train) self._scale += [scale] if self._add_random_feature: # -1, 1, with 0 mean X_train["random_feature"] = np.random.rand( X_train.shape[0]) * 2.0 - 1.0 if self._drop_features: available_cols = X_train.columns.tolist() drop_cols = [c for c in self._drop_features if c in available_cols] if len(drop_cols) == X_train.shape[1]: raise AutoMLException( "All features are droppped! Your data looks like random data." ) if drop_cols: X_train.drop(drop_cols, axis=1, inplace=True) self._drop_features = drop_cols if X_train is not None: # there can be catagorical columns (in CatBoost) which cant be clipped numeric_cols = X_train.select_dtypes( include="number").columns.tolist() X_train[numeric_cols] = X_train[numeric_cols].clip( lower=np.finfo(np.float32).min + 1000, upper=np.finfo(np.float32).max - 1000, ) return X_train, y_train, sample_weight
class Preprocessing(object): def __init__( self, preprocessing_params={ "target_preprocessing": [], "columns_preprocessing": {} }, model_name=None, k_fold=None, repeat=None, ): self._params = preprocessing_params if "target_preprocessing" not in preprocessing_params: self._params["target_preprocessing"] = [] if "columns_preprocessing" not in preprocessing_params: self._params["columns_preprocessing"] = {} # preprocssing step attributes self._categorical_y = None self._scale_y = None self._missing_values = [] self._categorical = [] self._scale = [] self._remove_columns = [] self._datetime_transforms = [] self._text_transforms = [] self._golden_features = None self._kmeans = None self._add_random_feature = self._params.get("add_random_feature", False) self._drop_features = self._params.get("drop_features", []) self._model_name = model_name self._k_fold = k_fold self._repeat = repeat def _exclude_missing_targets(self, X=None, y=None): # check if there are missing values in target column if y is None: return X, y y_missing = pd.isnull(y) if np.sum(np.array(y_missing)) == 0: return X, y y = y.drop(y.index[y_missing]) y.index = range(y.shape[0]) if X is not None: X = X.drop(X.index[y_missing]) X.index = range(X.shape[0]) return X, y # fit and transform def fit_and_transform(self, X_train, y_train, sample_weight=None): logger.debug("Preprocessing.fit_and_transform") if y_train is not None: # target preprocessing # this must be used first, maybe we will drop some rows because of missing target values target_preprocessing = self._params.get("target_preprocessing") logger.debug( "target_preprocessing params: {}".format(target_preprocessing)) X_train, y_train, sample_weight = ExcludeRowsMissingTarget.transform( X_train, y_train, sample_weight) if PreprocessingCategorical.CONVERT_INTEGER in target_preprocessing: logger.debug("Convert target to integer") self._categorical_y = LabelEncoder(try_to_fit_numeric=True) self._categorical_y.fit(y_train) y_train = pd.Series(self._categorical_y.transform(y_train)) if PreprocessingCategorical.CONVERT_ONE_HOT in target_preprocessing: logger.debug("Convert target to one-hot coding") self._categorical_y = LabelBinarizer() self._categorical_y.fit(pd.DataFrame({"target": y_train}), "target") y_train = self._categorical_y.transform( pd.DataFrame({"target": y_train}), "target") if Scale.SCALE_LOG_AND_NORMAL in target_preprocessing: logger.debug("Scale log and normal") self._scale_y = Scale(["target"], scale_method=Scale.SCALE_LOG_AND_NORMAL) y_train = pd.DataFrame({"target": y_train}) self._scale_y.fit(y_train) y_train = self._scale_y.transform(y_train) y_train = y_train["target"] if Scale.SCALE_NORMAL in target_preprocessing: logger.debug("Scale normal") self._scale_y = Scale(["target"], scale_method=Scale.SCALE_NORMAL) y_train = pd.DataFrame({"target": y_train}) self._scale_y.fit(y_train) y_train = self._scale_y.transform(y_train) y_train = y_train["target"] # columns preprocessing columns_preprocessing = self._params.get("columns_preprocessing") for column in columns_preprocessing: transforms = columns_preprocessing[column] # logger.debug("Preprocess column {} with: {}".format(column, transforms)) # remove empty or constant columns cols_to_remove = list( filter( lambda k: "remove_column" in columns_preprocessing[k], columns_preprocessing, )) if X_train is not None: X_train.drop(cols_to_remove, axis=1, inplace=True) self._remove_columns = cols_to_remove numeric_cols = [] # get numeric cols before text transformations # needed for golden features if X_train is not None and ("golden_features" in self._params or "kmeans_features" in self._params): numeric_cols = X_train.select_dtypes( include="number").columns.tolist() # there can be missing values in the text data, # but we don't want to handle it by fill missing methods # zeros will be imputed by text_transform method cols_to_process = list( filter( lambda k: "text_transform" in columns_preprocessing[k], columns_preprocessing, )) new_text_columns = [] for col in cols_to_process: t = TextTransformer() t.fit(X_train, col) X_train = t.transform(X_train) self._text_transforms += [t] new_text_columns += t._new_columns # end of text transform for missing_method in [PreprocessingMissingValues.FILL_NA_MEDIAN]: cols_to_process = list( filter( lambda k: missing_method in columns_preprocessing[k], columns_preprocessing, )) missing = PreprocessingMissingValues(cols_to_process, missing_method) missing.fit(X_train) X_train = missing.transform(X_train) self._missing_values += [missing] # golden features golden_columns = [] if "golden_features" in self._params: results_path = self._params["golden_features"]["results_path"] ml_task = self._params["golden_features"]["ml_task"] self._golden_features = GoldenFeaturesTransformer( results_path, ml_task) self._golden_features.fit(X_train[numeric_cols], y_train) X_train = self._golden_features.transform(X_train) golden_columns = self._golden_features._new_columns kmeans_columns = [] if "kmeans_features" in self._params: results_path = self._params["kmeans_features"]["results_path"] self._kmeans = KMeansTransformer(results_path, self._model_name, self._k_fold) self._kmeans.fit(X_train[numeric_cols], y_train) X_train = self._kmeans.transform(X_train) kmeans_columns = self._kmeans._new_features for convert_method in [ PreprocessingCategorical.CONVERT_INTEGER, PreprocessingCategorical.CONVERT_ONE_HOT, PreprocessingCategorical.CONVERT_LOO, ]: cols_to_process = list( filter( lambda k: convert_method in columns_preprocessing[k], columns_preprocessing, )) convert = PreprocessingCategorical(cols_to_process, convert_method) convert.fit(X_train, y_train) X_train = convert.transform(X_train) self._categorical += [convert] # datetime transform cols_to_process = list( filter( lambda k: "datetime_transform" in columns_preprocessing[k], columns_preprocessing, )) new_datetime_columns = [] for col in cols_to_process: t = DateTimeTransformer() t.fit(X_train, col) X_train = t.transform(X_train) self._datetime_transforms += [t] new_datetime_columns += t._new_columns # SCALE for scale_method in [Scale.SCALE_NORMAL, Scale.SCALE_LOG_AND_NORMAL]: cols_to_process = list( filter( lambda k: scale_method in columns_preprocessing[k], columns_preprocessing, )) if (len(cols_to_process) and len(new_datetime_columns) and scale_method == Scale.SCALE_NORMAL): cols_to_process += new_datetime_columns if (len(cols_to_process) and len(new_text_columns) and scale_method == Scale.SCALE_NORMAL): cols_to_process += new_text_columns if (len(cols_to_process) and len(golden_columns) and scale_method == Scale.SCALE_NORMAL): cols_to_process += golden_columns if (len(cols_to_process) and len(kmeans_columns) and scale_method == Scale.SCALE_NORMAL): cols_to_process += kmeans_columns if len(cols_to_process): scale = Scale(cols_to_process) scale.fit(X_train) X_train = scale.transform(X_train) self._scale += [scale] if self._add_random_feature: # -1, 1, with 0 mean X_train["random_feature"] = np.random.rand( X_train.shape[0]) * 2.0 - 1.0 if self._drop_features: available_cols = X_train.columns.tolist() drop_cols = [c for c in self._drop_features if c in available_cols] if len(drop_cols) == X_train.shape[1]: raise AutoMLException( "All features are droppped! Your data looks like random data." ) if drop_cols: X_train.drop(drop_cols, axis=1, inplace=True) self._drop_features = drop_cols if X_train is not None: # there can be catagorical columns (in CatBoost) which cant be clipped numeric_cols = X_train.select_dtypes( include="number").columns.tolist() X_train[numeric_cols] = X_train[numeric_cols].clip( lower=np.finfo(np.float32).min + 1000, upper=np.finfo(np.float32).max - 1000, ) return X_train, y_train, sample_weight def transform(self, X_validation, y_validation, sample_weight_validation=None): logger.debug("Preprocessing.transform") # doing copy to avoid SettingWithCopyWarning if X_validation is not None: X_validation = X_validation.copy(deep=False) if y_validation is not None: y_validation = y_validation.copy(deep=False) # target preprocessing # this must be used first, maybe we will drop some rows because of missing target values if y_validation is not None: target_preprocessing = self._params.get("target_preprocessing") logger.debug( "target_preprocessing -> {}".format(target_preprocessing)) ( X_validation, y_validation, sample_weight_validation, ) = ExcludeRowsMissingTarget.transform(X_validation, y_validation, sample_weight_validation) if PreprocessingCategorical.CONVERT_INTEGER in target_preprocessing: if y_validation is not None and self._categorical_y is not None: y_validation = pd.Series( self._categorical_y.transform(y_validation)) if PreprocessingCategorical.CONVERT_ONE_HOT in target_preprocessing: if y_validation is not None and self._categorical_y is not None: y_validation = self._categorical_y.transform( pd.DataFrame({"target": y_validation}), "target") if Scale.SCALE_LOG_AND_NORMAL in target_preprocessing: if self._scale_y is not None and y_validation is not None: logger.debug("Transform log and normalize") y_validation = pd.DataFrame({"target": y_validation}) y_validation = self._scale_y.transform(y_validation) y_validation = y_validation["target"] if Scale.SCALE_NORMAL in target_preprocessing: if self._scale_y is not None and y_validation is not None: logger.debug("Transform normalize") y_validation = pd.DataFrame({"target": y_validation}) y_validation = self._scale_y.transform(y_validation) y_validation = y_validation["target"] # columns preprocessing if len(self._remove_columns) and X_validation is not None: cols_to_remove = [ col for col in X_validation.columns if col in self._remove_columns ] X_validation.drop(cols_to_remove, axis=1, inplace=True) # text transform for tt in self._text_transforms: if X_validation is not None and tt is not None: X_validation = tt.transform(X_validation) for missing in self._missing_values: if X_validation is not None and missing is not None: X_validation = missing.transform(X_validation) # to be sure that all missing are filled # in case new data there can be gaps! if (X_validation is not None and np.sum(np.sum(pd.isnull(X_validation))) > 0 and len(self._params["columns_preprocessing"]) > 0): # there is something missing, fill it # we should notice user about it! # warnings should go to the separate file ... # warnings.warn( # "There are columns {} with missing values which didnt have missing values in train dataset.".format( # list( # X_validation.columns[np.where(np.sum(pd.isnull(X_validation)))] # ) # ) # ) missing = PreprocessingMissingValues( X_validation.columns, PreprocessingMissingValues.FILL_NA_MEDIAN) missing.fit(X_validation) X_validation = missing.transform(X_validation) # golden features if self._golden_features is not None: X_validation = self._golden_features.transform(X_validation) if self._kmeans is not None: X_validation = self._kmeans.transform(X_validation) for convert in self._categorical: if X_validation is not None and convert is not None: X_validation = convert.transform(X_validation) for dtt in self._datetime_transforms: if X_validation is not None and dtt is not None: X_validation = dtt.transform(X_validation) for scale in self._scale: if X_validation is not None and scale is not None: X_validation = scale.transform(X_validation) if self._add_random_feature: # -1, 1, with 0 mean X_validation["random_feature"] = ( np.random.rand(X_validation.shape[0]) * 2.0 - 1.0) if self._drop_features and X_validation is not None: X_validation.drop(self._drop_features, axis=1, inplace=True) if X_validation is not None: # there can be catagorical columns (in CatBoost) which cant be clipped numeric_cols = X_validation.select_dtypes( include="number").columns.tolist() X_validation[numeric_cols] = X_validation[numeric_cols].clip( lower=np.finfo(np.float32).min + 1000, upper=np.finfo(np.float32).max - 1000, ) return X_validation, y_validation, sample_weight_validation def inverse_scale_target(self, y): if self._scale_y is not None: y = pd.DataFrame({"target": y}) y = self._scale_y.inverse_transform(y) y = y["target"] return y def inverse_categorical_target(self, y): if self._categorical_y is not None: y = self._categorical_y.inverse_transform( pd.DataFrame({"target": np.array(y)})) y = y.astype(str) return y def get_target_class_names(self): pos_label, neg_label = "1", "0" if self._categorical_y is not None: if self._params["ml_task"] == BINARY_CLASSIFICATION: # binary classification for label, value in self._categorical_y.to_json().items(): if value == 1: pos_label = label else: neg_label = label return [neg_label, pos_label] else: # multiclass classification # logger.debug(self._categorical_y.to_json()) if "unique_values" not in self._categorical_y.to_json(): labels = dict( (v, k) for k, v in self._categorical_y.to_json().items()) else: labels = { i: v for i, v in enumerate(self._categorical_y.to_json() ["unique_values"]) } return list(labels.values()) else: # self._categorical_y is None if "ml_task" in self._params: if self._params["ml_task"] == BINARY_CLASSIFICATION: return ["0", "1"] return [] def prepare_target_labels(self, y): pos_label, neg_label = "1", "0" if self._categorical_y is not None: if len(y.shape) == 1: # binary classification for label, value in self._categorical_y.to_json().items(): if value == 1: pos_label = label else: neg_label = label # threshold is applied in AutoML class return pd.DataFrame({ "prediction_{}".format(neg_label): 1 - y, "prediction_{}".format(pos_label): y, }) else: # multiclass classification if "unique_values" not in self._categorical_y.to_json(): labels = dict( (v, k) for k, v in self._categorical_y.to_json().items()) else: labels = { i: v for i, v in enumerate(self._categorical_y.to_json() ["unique_values"]) } d = {} cols = [] for i in range(y.shape[1]): d["prediction_{}".format(labels[i])] = y[:, i] cols += ["prediction_{}".format(labels[i])] df = pd.DataFrame(d) df["label"] = np.argmax(np.array(df[cols]), axis=1) df["label"] = df["label"].map(labels) return df else: # self._categorical_y is None if "ml_task" in self._params: if self._params["ml_task"] == BINARY_CLASSIFICATION: return pd.DataFrame({ "prediction_0": 1 - y, "prediction_1": y }) elif self._params["ml_task"] == MULTICLASS_CLASSIFICATION: return pd.DataFrame( data=y, columns=[ "prediction_{}".format(i) for i in range(y.shape[1]) ], ) return pd.DataFrame({"prediction": y}) def to_json(self): preprocessing_params = {} if self._remove_columns: preprocessing_params["remove_columns"] = self._remove_columns if self._missing_values is not None and len(self._missing_values): mvs = [] # refactor for mv in self._missing_values: if mv.to_json(): mvs += [mv.to_json()] if mvs: preprocessing_params["missing_values"] = mvs if self._categorical is not None and len(self._categorical): cats = [] # refactor for cat in self._categorical: if cat.to_json(): cats += [cat.to_json()] if cats: preprocessing_params["categorical"] = cats if self._datetime_transforms is not None and len( self._datetime_transforms): dtts = [] for dtt in self._datetime_transforms: dtts += [dtt.to_json()] if dtts: preprocessing_params["datetime_transforms"] = dtts if self._text_transforms is not None and len(self._text_transforms): tts = [] for tt in self._text_transforms: tts += [tt.to_json()] if tts: preprocessing_params["text_transforms"] = tts if self._golden_features is not None: preprocessing_params[ "golden_features"] = self._golden_features.to_json() if self._kmeans is not None: preprocessing_params["kmeans"] = self._kmeans.to_json() if self._scale is not None and len(self._scale): scs = [sc.to_json() for sc in self._scale if sc.to_json()] if scs: preprocessing_params["scale"] = scs if self._categorical_y is not None: cat_y = self._categorical_y.to_json() if cat_y: preprocessing_params["categorical_y"] = cat_y if self._scale_y is not None: preprocessing_params["scale_y"] = self._scale_y.to_json() if "ml_task" in self._params: preprocessing_params["ml_task"] = self._params["ml_task"] if self._add_random_feature: preprocessing_params["add_random_feature"] = True if self._drop_features: preprocessing_params["drop_features"] = self._drop_features preprocessing_params["params"] = self._params return preprocessing_params def from_json(self, data_json, results_path): self._params = data_json.get("params", self._params) if "remove_columns" in data_json: self._remove_columns = data_json.get("remove_columns", []) if "missing_values" in data_json: self._missing_values = [] for mv_data in data_json["missing_values"]: mv = PreprocessingMissingValues() mv.from_json(mv_data) self._missing_values += [mv] if "categorical" in data_json: self._categorical = [] for cat_data in data_json["categorical"]: cat = PreprocessingCategorical() cat.from_json(cat_data) self._categorical += [cat] if "datetime_transforms" in data_json: self._datetime_transforms = [] for dtt_params in data_json["datetime_transforms"]: dtt = DateTimeTransformer() dtt.from_json(dtt_params) self._datetime_transforms += [dtt] if "text_transforms" in data_json: self._text_transforms = [] for tt_params in data_json["text_transforms"]: tt = TextTransformer() tt.from_json(tt_params) self._text_transforms += [tt] if "golden_features" in data_json: self._golden_features = GoldenFeaturesTransformer() self._golden_features.from_json(data_json["golden_features"], results_path) if "kmeans" in data_json: self._kmeans = KMeansTransformer() self._kmeans.from_json(data_json["kmeans"], results_path) if "scale" in data_json: self._scale = [] for scale_data in data_json["scale"]: sc = Scale() sc.from_json(scale_data) self._scale += [sc] if "categorical_y" in data_json: if "new_columns" in data_json["categorical_y"]: self._categorical_y = LabelBinarizer() else: self._categorical_y = LabelEncoder() self._categorical_y.from_json(data_json["categorical_y"]) if "scale_y" in data_json: self._scale_y = Scale() self._scale_y.from_json(data_json["scale_y"]) if "ml_task" in data_json: self._params["ml_task"] = data_json["ml_task"] self._add_random_feature = data_json.get("add_random_feature", False) self._drop_features = data_json.get("drop_features", [])
def fit_and_transform(self, X_train, y_train): logger.debug("Preprocessing.fit_and_transform") if y_train is not None: # target preprocessing # this must be used first, maybe we will drop some rows because of missing target values target_preprocessing = self._params.get("target_preprocessing") logger.debug("target_preprocessing params: {}".format(target_preprocessing)) X_train, y_train = ExcludeRowsMissingTarget.transform(X_train, y_train) if PreprocessingCategorical.CONVERT_INTEGER in target_preprocessing: logger.debug("Convert target to integer") self._categorical_y = LabelEncoder() self._categorical_y.fit(y_train) y_train = pd.Series(self._categorical_y.transform(y_train)) if PreprocessingCategorical.CONVERT_ONE_HOT in target_preprocessing: logger.debug("Convert target to one-hot coding") self._categorical_y = LabelBinarizer() self._categorical_y.fit(pd.DataFrame({"target": y_train}), "target") y_train = self._categorical_y.transform( pd.DataFrame({"target": y_train}), "target" ) if Scale.SCALE_LOG_AND_NORMAL in target_preprocessing: logger.debug("Scale log and normal") self._scale_y = Scale( ["target"], scale_method=Scale.SCALE_LOG_AND_NORMAL ) y_train = pd.DataFrame({"target": y_train}) self._scale_y.fit(y_train) y_train = self._scale_y.transform(y_train) y_train = y_train["target"] if Scale.SCALE_NORMAL in target_preprocessing: logger.debug("Scale normal") self._scale_y = Scale(["target"], scale_method=Scale.SCALE_NORMAL) y_train = pd.DataFrame({"target": y_train}) self._scale_y.fit(y_train) y_train = self._scale_y.transform(y_train) y_train = y_train["target"] # columns preprocessing columns_preprocessing = self._params.get("columns_preprocessing") for column in columns_preprocessing: transforms = columns_preprocessing[column] # logger.debug("Preprocess column {} with: {}".format(column, transforms)) # remove empty or constant columns cols_to_remove = list( filter( lambda k: "remove_column" in columns_preprocessing[k], columns_preprocessing, ) ) if X_train is not None: X_train.drop(cols_to_remove, axis=1, inplace=True) self._remove_columns = cols_to_remove # there can be missing values in the text data, # but we don't want to handle it by fill missing methods # zeros will be imputed by text_transform method cols_to_process = list( filter( lambda k: "text_transform" in columns_preprocessing[k], columns_preprocessing, ) ) new_text_columns = [] for col in cols_to_process: t = TextTransformer() t.fit(X_train, col) X_train = t.transform(X_train) self._text_transforms += [t] new_text_columns += t._new_columns # end of text transform for missing_method in [PreprocessingMissingValues.FILL_NA_MEDIAN]: cols_to_process = list( filter( lambda k: missing_method in columns_preprocessing[k], columns_preprocessing, ) ) missing = PreprocessingMissingValues(cols_to_process, missing_method) missing.fit(X_train) X_train = missing.transform(X_train) self._missing_values += [missing] for convert_method in [ PreprocessingCategorical.CONVERT_INTEGER, PreprocessingCategorical.CONVERT_ONE_HOT, ]: cols_to_process = list( filter( lambda k: convert_method in columns_preprocessing[k], columns_preprocessing, ) ) convert = PreprocessingCategorical(cols_to_process, convert_method) convert.fit(X_train) X_train = convert.transform(X_train) self._categorical += [convert] # datetime transform cols_to_process = list( filter( lambda k: "datetime_transform" in columns_preprocessing[k], columns_preprocessing, ) ) new_datetime_columns = [] for col in cols_to_process: t = DateTimeTransformer() t.fit(X_train, col) X_train = t.transform(X_train) self._datetime_transforms += [t] new_datetime_columns += t._new_columns # SCALE for scale_method in [Scale.SCALE_NORMAL, Scale.SCALE_LOG_AND_NORMAL]: cols_to_process = list( filter( lambda k: scale_method in columns_preprocessing[k], columns_preprocessing, ) ) if ( len(cols_to_process) and len(new_datetime_columns) and scale_method == Scale.SCALE_NORMAL ): cols_to_process += new_datetime_columns if ( len(cols_to_process) and len(new_text_columns) and scale_method == Scale.SCALE_NORMAL ): cols_to_process += new_text_columns if len(cols_to_process): scale = Scale(cols_to_process) scale.fit(X_train) X_train = scale.transform(X_train) self._scale += [scale] return X_train, y_train