示例#1
0
import os
import supervisely_lib as sly

WORKSPACE_ID = %%WORKSPACE_ID%%
src_project_name = '%%IN_PROJECT_NAME%%'

api = sly.Api(server_address=os.environ['SERVER_ADDRESS'], token=os.environ['API_TOKEN'])

#### End settings. ####

sly.logger.info('DOWNLOAD_PROJECT', extra={'title': src_project_name})
project = api.project.get_info_by_name(WORKSPACE_ID, src_project_name)
sly.download_project(
    api, project.id, os.path.join(sly.TaskPaths.OUT_ARTIFACTS_DIR, src_project_name), log_progress=True)
sly.logger.info('Project {!r} has been successfully downloaded.'.format(src_project_name))
示例#2
0
crops_per_image = %%crops_per_image:5%%

min_crop_side_fraction = %%min_crop_side_fraction:0.6%%
max_crop_side_fraction = %%max_crop_side_fraction:0.9%%

train_tag_name = '%%train_tag_name:train%%'
val_tag_name = '%%val_tag_name:val%%'

#### End settings. ####

# Download remote project
src_project_info = api.project.get_info_by_name(WORKSPACE_ID, src_project_name)
src_project_dir = os.path.join(sly.TaskPaths.DATA_DIR, src_project_name)

sly.logger.info('DOWNLOAD_PROJECT', extra={'title': src_project_name})
sly.download_project(api, src_project_info.id, src_project_dir, log_progress=True)
sly.logger.info('Project {!r} has been successfully downloaded. Starting to process.'.format(src_project_name))

src_project = sly.Project(directory=src_project_dir, mode=sly.OpenMode.READ)

dst_project_dir = os.path.join(sly.TaskPaths.OUT_PROJECTS_DIR, dst_project_name)
dst_project = sly.Project(directory=dst_project_dir, mode=sly.OpenMode.CREATE)

tag_meta_train = sly.TagMeta(train_tag_name, sly.TagValueType.NONE)
tag_meta_val = sly.TagMeta(val_tag_name, sly.TagValueType.NONE)

bbox_class_mapping = {
    obj_class.name: (
        obj_class if (obj_class.geometry_type == sly.Rectangle)
        else sly.ObjClass(obj_class.name + '_bbox', sly.Rectangle, color=obj_class.color))
    for obj_class in src_project.meta.obj_classes}
示例#3
0
def export_as_masks(api: sly.Api, task_id, context, state, app_logger):
    project_info = api.project.get_info_by_id(PROJECT_ID)
    dataset_ids = [ds.id for ds in api.dataset.get_list(PROJECT_ID)]
    sly.logger.info('DOWNLOAD_PROJECT', extra={'title': project_info.name})
    dest_dir = os.path.join(my_app.data_dir,
                            f'{project_info.id}_{project_info.name}')
    sly.download_project(api,
                         project_info.id,
                         dest_dir,
                         dataset_ids=dataset_ids,
                         log_progress=True)
    sly.logger.info(
        'Project {!r} has been successfully downloaded. Starting to render masks.'
        .format(project_info.name))

    if MACHINE_MASKS is True or HUMAN_MASKS is True:
        project = sly.Project(directory=dest_dir, mode=sly.OpenMode.READ)
        if MACHINE_MASKS:
            machine_colors = {
                obj_class.name: [idx, idx, idx]
                for idx, obj_class in enumerate(project.meta.obj_classes,
                                                start=1)
            }
            dump_json_file(machine_colors,
                           os.path.join(dest_dir,
                                        'obj_class_to_machine_color.json'),
                           indent=2)

        for dataset in project:
            ds_progress = sly.Progress('Processing dataset: {!r}/{!r}'.format(
                project.name, dataset.name),
                                       total_cnt=len(dataset))

            if HUMAN_MASKS is True:
                human_masks_dir = os.path.join(dataset.directory,
                                               'masks_human')
                sly.fs.mkdir(human_masks_dir)
            if MACHINE_MASKS is True:
                machine_masks_dir = os.path.join(dataset.directory,
                                                 'masks_machine')
                sly.fs.mkdir(machine_masks_dir)

            for item_name in dataset:
                item_paths = dataset.get_item_paths(item_name)
                ann = sly.Annotation.load_json_file(item_paths.ann_path,
                                                    project.meta)
                mask_img_name = os.path.splitext(item_name)[0] + '.png'

                raw_img = sly.image.read(item_paths.img_path)
                raw_img_rendered = raw_img.copy()
                if HUMAN_MASKS is True:
                    for label in ann.labels:
                        label.geometry.draw(
                            raw_img_rendered,
                            color=label.obj_class.color,
                            config=label.obj_class.geometry_config,
                            thickness=THICKNESS)
                    raw_img_rendered = ((raw_img_rendered.astype(np.uint16) +
                                         raw_img.astype(np.uint16)) /
                                        2).astype(np.uint8)
                    sly.image.write(
                        os.path.join(human_masks_dir, mask_img_name),
                        np.concatenate([raw_img, raw_img_rendered], axis=1))

                if MACHINE_MASKS is True:
                    machine_mask = np.zeros(shape=ann.img_size + (3, ),
                                            dtype=np.uint8)
                    for label in ann.labels:
                        label.geometry.draw(
                            machine_mask,
                            color=machine_colors[label.obj_class.name],
                            thickness=THICKNESS)
                    sly.image.write(
                        os.path.join(machine_masks_dir, mask_img_name),
                        machine_mask)

                    ds_progress.iter_done_report()
        sly.logger.info('Finished masks rendering.'.format(project_info.name))

    full_archive_name = str(project_info.id) + '_' + project_info.name + '.tar'
    result_archive = os.path.join(my_app.data_dir, full_archive_name)
    sly.fs.archive_directory(dest_dir, result_archive)
    app_logger.info("Result directory is archived")

    upload_progress = []
    remote_archive_path = "/Export-as-masks/{}_{}".format(
        task_id, full_archive_name)

    def _print_progress(monitor, upload_progress):
        if len(upload_progress) == 0:
            upload_progress.append(
                sly.Progress(message="Upload {!r}".format(full_archive_name),
                             total_cnt=monitor.len,
                             ext_logger=app_logger,
                             is_size=True))
        upload_progress[0].set_current_value(monitor.bytes_read)

    file_info = api.file.upload(TEAM_ID, result_archive, remote_archive_path,
                                lambda m: _print_progress(m, upload_progress))
    app_logger.info("Uploaded to Team-Files: {!r}".format(
        file_info.full_storage_url))
    api.task.set_output_archive(task_id,
                                file_info.id,
                                full_archive_name,
                                file_url=file_info.full_storage_url)

    my_app.stop()
max_crop_side_fraction = float('%%max_crop_side_fraction:0.9%%')

train_tag_name = '%%train_tag_name:train%%'
val_tag_name = '%%val_tag_name:val%%'

# Set to empty string to disable adding a background object.
background_class_name = '%%background_class_name:bg%%'

#### End settings. ####

# Download remote project
src_project_info = api.project.get_info_by_name(WORKSPACE_ID, src_project_name)
src_project_dir = os.path.join(sly.TaskPaths.DATA_DIR, src_project_name)

sly.logger.info('DOWNLOAD_PROJECT', extra={'title': src_project_name})
sly.download_project(api, src_project_info.id, src_project_dir, dataset_ids=src_dataset_ids, log_progress=True)
sly.logger.info('Project {!r} has been successfully downloaded. Starting to process.'.format(src_project_name))

src_project = sly.Project(directory=src_project_dir, mode=sly.OpenMode.READ)

dst_project_dir = os.path.join(sly.TaskPaths.OUT_PROJECTS_DIR, dst_project_name)
dst_project = sly.Project(directory=dst_project_dir, mode=sly.OpenMode.CREATE)

tag_meta_train = sly.TagMeta(train_tag_name, sly.TagValueType.NONE)
tag_meta_val = sly.TagMeta(val_tag_name, sly.TagValueType.NONE)

class_bg = None
if background_class_name != '':
    class_bg = sly.ObjClass(background_class_name, sly.Rectangle, color=[0, 0, 64])

dst_meta = src_project.meta.add_tag_metas([tag_meta_train, tag_meta_val]).add_obj_class(class_bg)
示例#5
0
import os
import supervisely_lib as sly

WORKSPACE_ID = int('%%WORKSPACE_ID%%')
src_project_name = '%%IN_PROJECT_NAME%%'
src_dataset_ids = %%DATASET_IDS:None%%

api = sly.Api(server_address=os.environ['SERVER_ADDRESS'], token=os.environ['API_TOKEN'])

#### End settings. ####

sly.logger.info('DOWNLOAD_PROJECT', extra={'title': src_project_name})
project = api.project.get_info_by_name(WORKSPACE_ID, src_project_name)
download_dir = os.path.join(sly.TaskPaths.OUT_ARTIFACTS_DIR, src_project_name)
sly.download_project(api, project.id, download_dir, dataset_ids=src_dataset_ids, log_progress=True, batch_size=10)
sly.logger.info('Project {!r} has been successfully downloaded.'.format(src_project_name))
import os
import supervisely_lib as sly

WORKSPACE_ID = int('%%WORKSPACE_ID%%')
src_project_name = '%%IN_PROJECT_NAME%%'
src_dataset_ids = '%%DATASET_IDS:None%%'

api = sly.Api(server_address=os.environ['SERVER_ADDRESS'],
              token=os.environ['API_TOKEN'])

#### End settings. ####

sly.logger.info('DOWNLOAD_PROJECT', extra={'title': src_project_name})
project = api.project.get_info_by_name(WORKSPACE_ID, src_project_name)
download_dir = os.path.join(sly.TaskPaths.OUT_ARTIFACTS_DIR, src_project_name)
sly.download_project(api,
                     project.id,
                     download_dir,
                     dataset_ids=src_dataset_ids,
                     log_progress=True)
sly.logger.info(
    'Project {!r} has been successfully downloaded.'.format(src_project_name))
示例#7
0
def train(api: sly.Api, task_id, context, state, app_logger):
    try:
        prepare_weights(state)

        # prepare directory for original Supervisely project
        project_dir = os.path.join(my_app.data_dir, "sly_project")
        sly.fs.mkdir(project_dir, remove_content_if_exists=True
                     )  # clean content for debug, has no effect in prod

        # download and preprocess Sypervisely project (using cache)
        download_progress = get_progress_cb("Download data (using cache)",
                                            g.project_info.items_count * 2)
        sly.download_project(api,
                             project_id,
                             project_dir,
                             cache=my_app.cache,
                             progress_cb=download_progress)

        # preprocessing: transform labels to bboxes, filter classes, ...
        sly.Project.to_detection_task(project_dir, inplace=True)
        train_classes = state["selectedClasses"]
        sly.Project.remove_classes_except(project_dir,
                                          classes_to_keep=train_classes,
                                          inplace=True)
        if state["unlabeledImages"] == "ignore":
            sly.Project.remove_items_without_objects(project_dir, inplace=True)

        # split to train / validation sets (paths to images and annotations)
        train_set, val_set = get_train_val_sets(project_dir, state)
        verify_train_val_sets(train_set, val_set)
        sly.logger.info(f"Train set: {len(train_set)} images")
        sly.logger.info(f"Val set: {len(val_set)} images")

        # prepare directory for data in YOLOv5 format (nn will use it for training)
        train_data_dir = os.path.join(my_app.data_dir, "train_data")
        sly.fs.mkdir(train_data_dir, remove_content_if_exists=True
                     )  # clean content for debug, has no effect in prod

        # convert Supervisely project to YOLOv5 format
        progress_cb = get_progress_cb("Convert Supervisely to YOLOv5 format",
                                      len(train_set) + len(val_set))
        yolov5_format.transform(project_dir, train_data_dir, train_set,
                                val_set, progress_cb)

        # init sys.argv for main training script
        init_script_arguments(state, train_data_dir, g.project_info.name)

        # start train script
        api.app.set_field(task_id, "state.activeNames",
                          ["labels", "train", "pred", "metrics"])  # "logs",
        get_progress_cb("YOLOv5: Scanning data ", 1)(1)
        train_yolov5.main()

        # upload artifacts directory to Team Files
        upload_artifacts(g.local_artifacts_dir, g.remote_artifacts_dir)
        set_task_output()
    except Exception as e:
        msg = f"Oops! Something went wrong, please try again or contact tech support. Find more info in the app logs. Error: {repr(e)}"
        sly.logger.error(msg, exc_info=True, extra={'exc_str': str(e)})
        my_app.show_modal_window(msg, level="error")
        api.app.set_field(task_id, "state.started", False)

    # stop application
    get_progress_cb("Finished, app is stopped automatically", 1)(1)
    my_app.stop(wait=False)