kernel_size=kernel_size, filter_size=filter_size, max_pool=max_pool, dense_size=dense_size, conv_type=conv_type, batch_norm=batch_norm, kernel_regularizer=kernel_regularizer) model.summary() key = input('Continue [Y/n]') if key == 'n': break #Create IDs model_id = "{:s}{:s}{}".format( str(lr).replace('.', 'e'), optimizer, int(time())) dataset_id = ids.get_dataset_id(dataset_dir) print("-" * 30) print("{:s}".format(dataset_id)) print("{:s}".format(model_id)) print("-" * 30) final_id = data_type + scan_type + model_id + '_' + net_id #Write Summary-------------------------------------------- # Open the file cwd = os.getcwd() #directory where the script is called by terminal with open('{}/summary{}.txt'.format(cwd, final_id), 'w') as fh: # Pass the file handle in as a lambda function to make it callable model.summary(print_fn=lambda x: fh.write(x + '\n')) model.compile(loss='binary_crossentropy', optimizer=opti,
pfa_re = re.compile(r"P\de\d+") dataset_id_re = re.compile(r"Tex\d+\_\d+") data_re = re.compile(r"[a-zA-Z]+$") fail_re = re.compile(r"aaandnadnadnan") list_re = [] list_re.append(num_acq_re) list_re.append(pfa_re) list_re.append(dataset_id_re) list_re.append(data_re) list_re.append(data_re) list_re.append(fail_re) #for rr in list_re: # print (rr.search(dataset_dir).group()) print(ids.get_dataset_id(dataset_dir)) #%% str_in = 'B_FA566_2017_07_07_003Swath1x0_ch0_y0.png' str_in = 'B_T66_2017_07_07_003Swath1x0_ch0_y0.png' import re anomaly_id = re.compile(r"\_(T|FA)\d+\_") acq_id = re.compile(r"_\d\d\d\d\_\d\d_\d\d[^x]*") is_central = re.compile(r"x0\_ch0\_y0\.") list_re = [] list_re.append(anomaly_id) list_re.append(acq_id) list_re.append(is_central) for rr in list_re: