def conclude(self, pars): org = self.organizer(pars, verbose=True) org.scale(toPdf=True) #org.scale( lumiToUseInAbsenceOfData = pars['lumi'] ) kwargs = { "detailedCalculables": False, "blackList": ["lumiHisto", "xsHisto", "nJobsHisto"], "rowColors": 2 * [13] + 2 * [45], "rowCycle": 100, #"omit2D" : True, } supy.plotter(org, pdfFileName=self.pdfFileName(org.tag + "_log"), doLog=True, pegMinimum=0.01, **kwargs).plotAll() supy.plotter(org, pdfFileName=self.pdfFileName(org.tag + "_nolog"), doLog=False, **kwargs).plotAll() r.gStyle.SetOptStat(0) self.resPlots(org) self.filterPlots(org) self.fitPlots(org)
def conclude(self,pars) : #make a pdf file with plots from the histograms created above org = self.organizer(pars) org.scale(lumiToUseInAbsenceOfData=1.0e-3) # /pb supy.plotter(org, pdfFileName = self.pdfFileName(org.tag), ).plotAll()
def conclude(self, pars): org = self.organizer(pars, verbose=True) def gopts(name="", color=1): return {"name": name, "color": color, "markerStyle": 1, "lineWidth": 2, "goptions": "ehist"} for new, old, color in [("DY->tt", "dy_tt", r.kBlue), ("DY->mt", "dy_mt", r.kRed), ("DY->et", "dy_et", r.kOrange + 3), ("DY->em", "dy_em", r.kGreen), ]: org.mergeSamples(targetSpec=gopts(new, color), sources=[old]) # org.scale() # to data org.scale(lumiToUseInAbsenceOfData=4.0e3) # /pb # org.scale(toPdf=True) def yx(h): if "_prof" in h.GetName(): ax = h.GetXaxis() f = r.TF1("yx", "x", ax.GetXmin(), ax.GetXmax()) f.SetLineWidth(1) f.Draw("same") return f supy.plotter(org, pdfFileName=self.pdfFileName(org.tag), printImperfectCalcPageIfEmpty=False, printXs=True, blackList=["lumiHisto", "xsHisto", "nJobsHisto"], rowColors=[r.kBlack, r.kViolet+4], doLog=False, # pegMinimum=0.1, fitFunc=yx, ).plotAll()
def conclude(self, pars): org = self.organizer(pars) org.scale(lumiToUseInAbsenceOfData=20.0) supy.plotter(org, doLog=False, pdfFileName=self.pdfFileName(org.tag), ).plotAll()
def conclude(self, pars): org = self.organizer(pars, prefixesNoScale=["efficiency_"]) def gopts(name="", color=1): return { "name": name, "color": color, "markerStyle": 1, "lineWidth": 2, "goptions": "ehist" } org.mergeSamples(targetSpec=gopts("QCD", r.kBlue), sources=["QCD_c4_pu140_Pt_0p3_4"]) org.mergeSamples(targetSpec=gopts("H", r.kBlue), allWithPrefix="H_") org.scale(1.0 / fb) supy.plotter( org, pdfFileName=self.pdfFileName(org.tag), printImperfectCalcPageIfEmpty=False, printXs=True, blackList=["lumiHisto", "xsHisto", "nJobsHisto"], rowColors=[r.kBlack, r.kViolet + 4], fitFunc=lambda x: self.profFit(x, "eta"), doLog=False, drawYx=True, showStatBox=True, optStat=1100, ).plotAll() self.dumpFitResults(fileName="fitResults.py")
def conclude(self, config): org = self.organizer(config) supy.utils.io.printSkimResults(org) supy.plotter( org, pdfFileName=self.pdfFileName(org.tag), blackList=["lumiHisto", "xsHisto", "nJobsHisto"] ).plotAll()
def conclude(self,pars) : org = self.organizer(pars) org.scale(lumiToUseInAbsenceOfData=20.0) supy.plotter(org, pdfFileName = self.pdfFileName(org.tag), doLog = False, blackList = ['lumiHisto','xsHisto','nJobsHisto'], ).plotAll()
def conclude(self,pars) : #make a pdf file with plots from the histograms created above org = self.organizer(pars) supy.plotter( org, pdfFileName = self.pdfFileName(org.tag), doLog = False, blackList = ['num_.*', 'den_.*'], ).plotAll()
def conclude(self, pars): org = self.organizer(pars) org.mergeSamples(targetSpec={"name": "qcd_py6", "color": r.kBlue}, allWithPrefix="v12_qcd_py6") org.scale(100) supy.plotter( org, pdfFileName=self.pdfFileName(org.tag), blackList=["lumiHisto", "xsHisto", "xsPostWeightsHisto", "nJobsHisto"], ).plotAll()
def conclude(self,pars) : #make a pdf file with plots from the histograms created above org = self.organizer(pars) org.scale() supy.plotter( org, pdfFileName = self.pdfFileName(org.tag), #samplesForRatios = ("Example_Skimmed_900_GeV_Data","Example_Skimmed_900_GeV_MC"), #sampleLabelsForRatios = ("data","sim"), ).plotAll()
def conclude(self, pars): org = self.organizer(pars, verbose=True) def gopts(name="", color=1): return {"name":name, "color":color, "markerStyle":1, "lineWidth":2, "goptions":"ehist"} org.mergeSamples(targetSpec={"name": "Data"}, allWithPrefix="data") mc = ".".join(["", "LastBinOverBin1", "diTauHadTriggerWeight"]) sig = mc + ".x100" for sample, color, ws in [("H260_hh_bbtautau", r.kOrange, sig), ("H300_hh_bbtautau", 28, sig), ("H350_hh_bbtautau", 44, sig), ("ZZ_llqq", r.kYellow, mc), ("tt_bblnln", r.kMagenta, mc), ("tt_bblnqq", r.kBlue, mc), ("dy_ll", r.kGreen, mc), ]: name = sample if ws.endswith(".x100"): name = sample[:4] + ".x100" org.mergeSamples(targetSpec=gopts(name, color), sources=[sample + ws]) org.mergeSamples(targetSpec=gopts("w_ln_123j", r.kMagenta+2), allWithPrefix="w_ln") org.mergeSamples(targetSpec=gopts("EWK", r.kRed), keepSources=True, sources=["ZZ_llqq", "tt_bblnln", "tt_bblnqq", "dy_ll", "w_ln_123j"]) org.scale() # to data #org.scale(lumiToUseInAbsenceOfData=20.0e3) # /pb #org.scale(toPdf=True) supy.plotter(org, pdfFileName=self.pdfFileName(org.tag), printImperfectCalcPageIfEmpty=False, printXs=True, blackList=["lumiHisto", "xsHisto", "nJobsHisto"], rowColors=[r.kBlack, r.kViolet+4], doLog=True, pegMinimum=0.1, showStatBox=False, latexYieldTable=False, #samplesForRatios=("H300_hh_bbtautau", "tt_bbll"), #sampleLabelsForRatios=("hh", "tt"), #foms=[{"value": lambda x, y: x/y, # "uncRel": lambda x, y, xUnc, yUnc: ((xUnc/x)**2 + (yUnc/y)**2)**0.5, # "label": lambda x, y:"%s/%s" % (x, y), # }, # #{"value": lambda x,y: x/(y**0.5), # # "uncRel": lambda x, y, xUnc, yUnc: math.sqrt((xUnc/x)**2 + (yUnc/y/2.)**2), # # "label": lambda x,y: "%s/sqrt(%s)" % (x, y), # # }, # ], ).plotAll()
def conclude(self,pars) : #make a pdf file with plots from the histograms created above org = self.organizer(pars) org.scale(lumiToUseInAbsenceOfData=1.0e-3) # /pb supy.plotter(org, pdfFileName = self.pdfFileName(org.tag), samplesForRatios = ('SM', ['A2', 'A4', 'A6', 'P3']), sampleLabelsForRatios = ('SM','BSM'), ).plotAll()
def conclude(self,pars) : #make a pdf file with plots from the histograms created above org = self.organizer(pars) org.scale() supy.plotter(org, pdfFileName = self.pdfFileName(org.tag), doLog=False, blackList = ['lumiHisto','xsHisto','nJobsHisto','cnt_.*', 'cum_.*'], ).plotAll()
def conclude(self,pars) : #make a pdf file with plots from the histograms created above org = self.organizer(pars) mode = self.parameters()['mode'] mode, skim = self.parameters()['mode'], self.parameters()['skim'] supy.plotter( org, pdfFileName = self.pdfFileName(org.tag+self.parameters()['mode']), doLog = False, blackList = ['num_.*', 'den_.*'], ).plotAll()
def conclude(self, conf) : org = self.organizer(conf) org.scale(5.0e3) supy.plotter(org, pdfFileName = self.pdfFileName(org.tag), rowColors = [r.kBlack, r.kViolet+4], #doLog = False, pegMinimum = 0.1, blackList = ["lumiHisto","xsHisto","nJobsHisto"], ).plotAll()
def conclude(self,pars) : #make a pdf file with plots from the histograms created above org = self.organizer(pars) org.scale(lumiToUseInAbsenceOfData=1.0e-3) # /pb supy.plotter(org, pdfFileName = self.pdfFileName(org.tag), doLog=False, blackList = ['lumiHisto','xsHisto','nJobsHisto',], samplesForRatios=('tt-fs',['tt-af','tHu-af','tHu-fs']), ).plotAll()
def conclude(self, pars): #make a pdf file with plots from the histograms created above org = self.organizer(pars) org.scale() supy.plotter(org, pdfFileName=self.pdfFileName(org.tag), samplesForRatios=("Data", "MC"), sampleLabelsForRatios=("data", "sim"), detailedCalculables=True, ).plotAll()
def conclude(self,pars) : org = self.organizer(pars) org.mergeSamples(targetSpec = {"name":"qcd_mg", "color":r.kBlue}, allWithPrefix="qcd_mg") org.mergeSamples(targetSpec = {"name":"qcd_py6", "color":r.kRed}, allWithPrefix="qcd_py6") org.scale() supy.plotter( org, pdfFileName = self.pdfFileName(org.tag), blackList = ["lumiHisto","xsHisto","xsPostWeightsHisto","nJobsHisto","genpthat"], detailedCalculables = True, ).plotAll()
def conclude(self,pars) : org = self.organizer(pars) org.scale(1.0e3) supy.plotter(org, pdfFileName = self.pdfFileName(""), blackList = ["lumiHisto","xsHisto","nJobsHisto",], rowColors = [r.kBlack, r.kViolet+4], pegMinimum = 0.1, doLog = False, ).plotAll()
def conclude(self,pars) : org = self.organizer(pars) org.mergeSamples(sources = ["ttz_8_mg.job269_1"], targetSpec = {"name":"TTZ", "markerStyle":20}) org.scale(10.0e3) supy.plotter(org, pdfFileName = self.pdfFileName(""), blackList = ["lumiHisto","xsHisto","nJobsHisto",], rowColors = [r.kBlack, r.kViolet+4], pegMinimum = 0.1, doLog = False, ).plotAll()
def conclude(self,pars) : org = self.organizer(pars) org.scale(toPdf=True) supy.plotter(org, pdfFileName = self.pdfFileName(org.tag), doLog = False, #noSci = True, #pegMinimum = 0.1, detailedCalculables = True, blackList = ["lumiHisto","xsHisto","nJobsHisto"], ).plotAll()
def conclude(self,pars) : #make a pdf file with plots from the histograms created above org = self.organizer(pars) # mergeSamples doesn't work with the special step matchingEffVsEt that implements mergeFunc #org.mergeSamples(targetSpec = {"name":"Period B (part)", "color":r.kBlack}, allWithPrefix="202") #org.mergeSamples(targetSpec = {"name":"Period B (part)", "color":r.kBlack}, # sources=['202668_L1_4J15', '202712_L1_4J15', '202740_L1_4J15', '202798_L1_4J15']) #org.scale(lumiToUseInAbsenceOfData=1000.) supy.plotter( org, pdfFileName = self.pdfFileName(org.tag), doLog = False, blackList = ['num_', 'den_'], ).plotAll()
def conclude(self, pars): org = self.organizer(pars, prefixesNoScale=["efficiency_"]) supy.utils.printSkimResults(org) org.scale(1.e3) supy.plotter(org, pdfFileName=self.pdfFileName(org.tag), printImperfectCalcPageIfEmpty=False, printXs=True, blackList=["lumiHisto", "xsHisto", "nJobsHisto"], rowColors=[1, 2], doLog=True, optStat=1111, showStatBox=False, ).plotAll()
def conclude(self, pars): org = self.organizer(pars) supy.utils.printSkimResults(org) def gopts(name="", color=1): return { "name": name, "color": color, "markerStyle": 1, "lineWidth": 2, "goptions": "ehist" } org.mergeSamples(targetSpec=gopts("tt_0_6", r.kBlue), sources=["tt_0_6.GenWeight"]) org.mergeSamples(targetSpec=gopts("tt_6_11", r.kGreen), sources=["tt_6_11.GenWeight"]) org.mergeSamples(targetSpec=gopts("tt_11_17", r.kCyan), sources=["tt_11_17.GenWeight"]) org.mergeSamples(targetSpec=gopts("tt_17_25", r.kMagenta), sources=["tt_17_25.GenWeight"]) org.mergeSamples(targetSpec=gopts("tt_25_1k", r.kOrange), sources=["tt_25_1k.GenWeight"]) org.mergeSamples(targetSpec=gopts("tt", r.kBlack), allWithPrefix="tt_", keepSources=True) org.scale(3.e3 / fb) supy.plotter( org, pdfFileName=self.pdfFileName(org.tag), printImperfectCalcPageIfEmpty=False, printXs=True, blackList=["lumiHisto", "xsHisto", "nJobsHisto"], rowColors=[r.kBlack, r.kViolet + 4], doLog=True, #optStat=1100, optStat=1111, #fitFunc=self.profFit, showStatBox=False, latexYieldTable=True, #samplesForRatios=("hh_bbtt", "tt"), #sampleLabelsForRatios=("hh", "tt"), #foms=[{"value": lambda x, y: x/y, # "uncRel": lambda x, y, xUnc, yUnc: math.sqrt((xUnc/x)**2 + (yUnc/y)**2), # "label": lambda x, y:"%s/%s" % (x, y), # }, # ], ).plotAll()
def conclude(self,pars) : org = self.organizer(pars) org.mergeSamples(targetSpec = {"name":"SingleMu","color":r.kBlack,"markerStyle":20}, allWithPrefix="SingleMu") org.mergeSamples(targetSpec = {"name":"qcd", "color":r.kBlue}, allWithPrefix="qcd") org.mergeSamples(targetSpec = {"name":"w_jets","color":r.kRed}, allWithPrefix="w_jets") org.mergeSamples(targetSpec = {"name":"t#bar{t}","color":r.kViolet}, allWithPrefix="tt_tauola_fj_mg") #org.scaleOneRaw([ss['name'] for ss in org.samples].index('w_jets'), 0.6) org.mergeSamples(targetSpec = {"name":"s.m.", "color":r.kGreen+3}, keepSources = True, sources = ['qcd','w_jets','t#bar{t}'], force = True) org.scale() kwargs = { "blackList":["lumiHisto","xsHisto","nJobsHisto","muonTriggerWeightPF"], "samplesForRatios":("SingleMu","s.m.") if "s.m." in [ss['name'] for ss in org.samples] else ("","")} supy.plotter(org, pdfFileName = self.pdfFileName(org.tag+'_log'), doLog = True, **kwargs).plotAll() supy.plotter(org, pdfFileName = self.pdfFileName(org.tag+'_nolog'), doLog = False, **kwargs).plotAll()
def conclude(self, pars): org = self.organizer(pars, prefixesNoScale=["efficiency_"]) supy.utils.printSkimResults(org) org.scale(1.e3) supy.plotter( org, pdfFileName=self.pdfFileName(org.tag), printImperfectCalcPageIfEmpty=False, printXs=True, blackList=["lumiHisto", "xsHisto", "nJobsHisto"], rowColors=[1, 2], doLog=True, optStat=1111, showStatBox=False, ).plotAll()
def conclude(self,pars) : org = self.organizer(pars, verbose = True ) org.mergeSamples(targetSpec={"name":"qcd"}, allWithPrefix="qcd") org.scale( toPdf = True ) names = [ss["name"] for ss in org.samples] kwargs = {"detailedCalculables": False, "blackList":["lumiHisto","xsHisto","nJobsHisto"], "detailedCalculables" : True, "rowColors" : self.rowcolors, "rowCycle" : 100, } supy.plotter(org, pdfFileName = self.pdfFileName(org.tag+"_log"), doLog = True, pegMinimum = 0.01, **kwargs ).plotAll() supy.plotter(org, pdfFileName = self.pdfFileName(org.tag+"_nolog"), doLog = False, **kwargs ).plotAll()
def conclude(self,pars) : #make a pdf file with plots from the histograms created above org = self.organizer(pars) org.mergeSamples(targetSpec = {"name":"Standard Model", "color":r.kBlue,"lineWidth":3,"goptions":"hist"}, allWithPrefix = "qcd") org.mergeSamples(targetSpec = {"name":"Data", "color":r.kBlack, "markerStyle":20}, allWithPrefix = "data") org.mergeSamples(targetSpec = {"name":"H #rightarrow X #rightarrow q#bar{q}", "color":r.kRed,"lineWidth":3,"goptions":"hist","lineStyle":2}, allWithPrefix = "H") org.scale() plotter = supy.plotter( org, pdfFileName = self.pdfFileName(org.tag), #samplesForRatios = ("data","qcd"), #sampleLabelsForRatios = ("data","qcd"), doLog=True, anMode=True, pegMinimum=1, blackList = ["lumiHisto","xsHisto","nJobsHisto"], ) plotter.plotAll() plotter.individualPlots(plotSpecs = [{"plotName":"PromptEnergyFrac_h_jetPromptEnergyFrac", "stepName":"promptness", "stepDesc":"promptness", "newTitle":"; Charged Prompt Energy Fraction; jets / bin", "legendCoords": (0.35, 0.35, 0.9, 0.55), "stampCoords": (0.6, 0.68) }, {"plotName":"NPromptTracks_h_jetPromptEnergyFrac", "stepName":"promptness", "stepDesc":"promptness", "newTitle":"; Number of Prompt Tracks ; jets / bin", "legendCoords": (0.55, 0.55, 0.9, 0.75), "stampCoords": (0.7, 0.88) }, ] )
def conclude(self,pars) : #make a pdf file with plots from the histograms created above org = self.organizer(pars) #org.mergeSamples(targetSpec = {"name":"#tilde{q}(1500)#rightarrow#tilde{#chi}(500) c#tau=18.1cm", "color":r.kRed,"lineWidth":3,"goptions":"hist","lineStyle":1}, allWithPrefix = "SQ_1500_CHI_494") #org.mergeSamples(targetSpec = {"name":"#tilde{q}(1500)#rightarrow#tilde{#chi}(150) c#tau=4.5cm", "color":r.kYellow,"lineWidth":3,"goptions":"hist","lineStyle":1}, allWithPrefix = "SQ_1500_CHI_150") #org.mergeSamples(targetSpec = {"name":"#tilde{q}(1000)#rightarrow#tilde{#chi}(150) c#tau=5.9cm", "color":r.kBlack,"lineWidth":3,"goptions":"hist","lineStyle":1}, allWithPrefix = "SQ_1000_CHI_148") #org.mergeSamples(targetSpec = {"name":"#tilde{q}(1000)#rightarrow#tilde{#chi}(500) c#tau=22.7cm", "color":r.kOrange,"lineWidth":3,"goptions":"hist","lineStyle":1}, allWithPrefix = "SQ_1000_CHI_500") #org.mergeSamples(targetSpec = {"name":"#tilde{q}(350)#rightarrow#tilde{#chi}(150) c#tau=18.8cm", "color":r.kGreen,"lineWidth":3,"goptions":"hist","lineStyle":1}, allWithPrefix = "SQ_350_CHI_148") #org.mergeSamples(targetSpec = {"name":"#tilde{q}(700)#rightarrow#tilde{#chi}(150) c#tau=8.1cm", "color":r.kBlue,"lineWidth":3,"goptions":"hist","lineStyle":1}, allWithPrefix = "SQ_700_CHI_150") #org.mergeSamples(targetSpec = {"name":"#tilde{q}(700)#rightarrow#tilde{#chi}(500) c#tau=27.9cm", "color":r.kMagenta,"lineWidth":3,"goptions":"hist","lineStyle":1}, allWithPrefix = "SQ_700_CHI_500") org.scale(lumiToUseInAbsenceOfData=18600) plotter = supy.plotter( org, pdfFileName = self.pdfFileName(org.tag), doLog=True, anMode=True, showStatBox=True, pegMinimum=0.1, shiftUnderOverFlows=False, blackList = ["lumiHisto","xsHisto","nJobsHisto"], ) plotter.plotAll() #plotter.doLog=False plotter.anMode=True #self.meanLxy(org) #self.sqsqRatio(org) org.lumi=None #self.flavors(org) #self.effPlots(org,plotter,denName='NE',numName='NEReco',sel='Low',flavor='') #self.sigPlots(plotter) self.totEvtEff(org,dir='eff2Neu')
def conclude(self,pars) : #make a pdf file with plots from the histograms created above org = self.organizer(pars) org.mergeSamples(targetSpec = {"name":"QCD", "color":r.kBlue,"lineWidth":3,"goptions":"E2","fillColor":r.kBlue,"fillStyle":3001,"double":True,"markerSize":0}, allWithPrefix = "qcd") org.mergeSamples(targetSpec = {"name":"Data", "color":r.kBlack, "markerStyle":20}, allWithPrefix = "data") org.mergeSamples(targetSpec = {"name":"H#rightarrow X #rightarrow q#bar{q}", "color":r.kRed,"lineWidth":3,"goptions":"hist","lineStyle":2}, allWithPrefix = "H") org.scale(lumiToUseInAbsenceOfData=11) plotter = supy.plotter( org, pdfFileName = self.pdfFileName(org.tag), samplesForRatios = ("Data","QCD"), sampleLabelsForRatios = ("Data","QCD"), doLog=True, pageNumbers=False, #pegMinimum=1, anMode=True, blackList = ["lumiHisto","xsHisto","nJobsHisto"], ) #plotter.plotAll() #plotABCDscan(self,org,plotter,4,blind=False) plotter.individualPlots(plotSpecs = [ {"plotName":"Discriminant_h_dijetTrueLxy", "stepName":"ABCDvars", "stepDesc":"ABCDvars", "newTitle":"; Vertex-Cluster discriminant; dijets / bin", "legendCoords": (0.7, 0.75, 0.9, 0.9), "stampCoords": (0.45, 0.88) }, ])
def conclude(self,pars) : #make a pdf file with plots from the histograms created above org = self.organizer(pars) org.mergeSamples(targetSpec = {"name":"Simulation", "color":r.kBlue,"lineWidth":3,"goptions":"hist"}, allWithPrefix = "qcd") org.mergeSamples(targetSpec = {"name":"Data", "color":r.kBlack, "markerStyle":20}, allWithPrefix = "data") org.scale(lumiToUseInAbsenceOfData=18600) plotter = supy.plotter( org, pdfFileName = self.pdfFileName(org.tag), doLog=True, samplesForRatios = ("Data","Simulation"), sampleLabelsForRatios = ("Data","Sim"), #anMode=True, blackList = ["lumiHisto","xsHisto","nJobsHisto"], dependence2D=True, doCorrTable=True, pegMinimum=5, anMode=True ) plotter.plotAll() org.lumi=None plotter.individualPlots(plotSpecs = [{"plotName":"NAvgMissHitsAfterVert_h_dijetVtxpt", "stepName":"cutvars", "stepDesc":"cutvars", "newTitle":";Missing Hits per track after Vertex;dijets / bin", "legendCoords": (0.55, 0.55, 0.9, 0.75), "stampCoords": (0.67, 0.88) }, ] )
def conclude(self, pars): # make a pdf file with plots from the histograms created above org = self.organizer(pars) org.mergeSamples( targetSpec={"name": "Simulation", "color": r.kBlue, "markerStyle": 21, "markerSize": 0.6}, allWithPrefix="qcd", ) org.mergeSamples( targetSpec={"name": "Data", "color": r.kBlack, "markerStyle": 21, "markerSize": 0.6}, allWithPrefix="data" ) org.scale(lumiToUseInAbsenceOfData=11) plotter = supy.plotter( org, pdfFileName=self.pdfFileName(org.tag), samplesForRatios=("Data", "Simulation"), sampleLabelsForRatios=("Data", "Sim"), doLog=True, anMode=True, pageNumbers=False, pushLeft=True, blackList=["lumiHisto", "xsHisto", "nJobsHisto"], ) plotter.plotAll() plotter.doLog = False self.makeEfficiencyPlots1(org, "jetPt", "jetTrigPrompt1", plotter) self.makeEfficiencyPlots2(org, "jetPromptEnergyFrac", "jetTrigPrompt2", plotter)
def conclude(self,pars) : #make a pdf file with plots from the histograms created above org = self.organizer(pars) org.mergeSamples(targetSpec = {"name":"H^{0}(1000)#rightarrow 2X^{0}(350) c#tau=35cm", "color":r.kRed,"lineWidth":3,"goptions":"","lineStyle":1}, allWithPrefix = "H_1000_X_350") org.mergeSamples(targetSpec = {"name":"H^{0}(400)#rightarrow 2X^{0}(150) c#tau=40cm", "color":r.kGreen,"lineWidth":3,"goptions":"","lineStyle":1}, allWithPrefix = "H_400_X_150") org.mergeSamples(targetSpec = {"name":"H^{0}(200)#rightarrow 2X^{0}(50) c#tau=20cm", "color":r.kBlack,"lineWidth":3,"goptions":"","lineStyle":1}, allWithPrefix = "H_200_X_50") org.mergeSamples(targetSpec = {"name":"H^{0}(1000)#rightarrow 2X^{0}(150) c#tau=10cm", "color":r.kBlue,"lineWidth":3,"goptions":"","lineStyle":1}, allWithPrefix = "H_1000_X_150") org.mergeSamples(targetSpec = {"name":"H^{0}(400)#rightarrow 2X^{0}(50) c#tau=8cm", "color":r.kMagenta,"lineWidth":3,"goptions":"","lineStyle":1}, allWithPrefix = "H_400_X_50") org.scale(lumiToUseInAbsenceOfData=18600) plotter = supy.plotter( org, pdfFileName = self.pdfFileName(org.tag), doLog=True, anMode=True, showStatBox=True, pegMinimum=0.0001, shiftUnderOverFlows=False, blackList = ["lumiHisto","xsHisto","nJobsHisto"], ) plotter.plotAll() plotter.anMode=True #self.meanLxy(org) org.lumi=None #self.effPlots(org,plotter,denName='NE',numName='NEReco',sel='Low',flavor='') #self.sigPlots(plotter) #self.totalEfficiencies(org,dir='eff2',flavor='') self.totEvtEff(org,dir='eff2HV')
def conclude(self,pars) : org = self.organizer(pars) #org.mergeSamples(targetSpec = {"name":"SingleMu", "color":r.kBlack}, allWithPrefix="SingleMu") #org.scale() supy.plotter(org, pdfFileName = self.pdfFileName(org.tag), #samplesForRatios = ("2010 Data","standard_model"), #sampleLabelsForRatios = ("data","s.m."), #whiteList = ["lowestUnPrescaledTrigger"], #doLog = False, #compactOutput = True, #noSci = True, #pegMinimum = 0.1, blackList = ["lumiHisto","xsHisto","nJobsHisto"], ).plotAll()
def plotMeldScale(self, tagSuffix): if tagSuffix not in self.orgMelded: print tagSuffix, "not in", self.orgMelded.keys() print "run meldScale() before plotMeldScale()" return melded = copy.deepcopy(self.orgMelded[tagSuffix]) lname, tt, sn, jn, ptMin = tagSuffix.split('_') for s in [ 'top.ttj_%s.%s.pu' % (tt, s) for s in ['wQQ', 'wQG', 'wAG', 'wGG'] ]: melded.drop(s) for log, label in [(False, ""), (True, "_log")][:1]: pl = supy.plotter( melded, pdfFileName=self.pdfFileName(melded.tag + label), doLog=log, blackList=["lumiHisto", "xsHisto", "nJobsHisto"], rowColors=self.rowcolors, samplesForRatios=("top.Data 2012", "S.M."), sampleLabelsForRatios=('data', 's.m.'), rowCycle=100, omit2D=True, pageNumbers=False, ).plotAll() print print 'fitTopDPtDPhi indices:' print melded.indicesOfStepsWithKey('fitTopDPtDPhi')
def conclude(self, pars): org = self.organizer(pars, prefixesNoScale=["efficiency_"]) def gopts(name="", color=1): return { "name": name, "color": color, "markerStyle": 1, "lineWidth": 2, "goptions": "ehist" } #org.mergeSamples(targetSpec=gopts("BB_0_3", r.kGreen), sources=["BB_0_3.GenWeight"]) #org.mergeSamples(targetSpec=gopts("BB_3_7", r.kCyan), sources=["BB_3_7.GenWeight"]) #org.mergeSamples(targetSpec=gopts("BB_7_13", r.kMagenta), sources=["BB_7_13.GenWeight"]) #org.mergeSamples(targetSpec=gopts("BB_13_21", r.kOrange), sources=["BB_13_21.GenWeight"]) org.mergeSamples(targetSpec=gopts("BB", r.kBlue), allWithPrefix="BB_") org.mergeSamples(targetSpec=gopts("H", r.kBlue), allWithPrefix="H_") org.mergeSamples(targetSpec=gopts("hh_bb#tau#tau", r.kRed), sources=["hh_bbtt"]) #org.mergeSamples(targetSpec=gopts("H_c0_pu0", r.kBlack), sources=["H_0_3_c0_pu0.GenWeight"]) #org.mergeSamples(targetSpec=gopts("H_c0_pu140", r.kBlue), sources=["H_0_3_c0_pu140.GenWeight"]) #org.mergeSamples(targetSpec=gopts("H_c3_pu140", r.kGreen), sources=["H_0_3_c3_pu140.GenWeight"]) #org.mergeSamples(targetSpec=gopts("H_c4_pu140", r.kCyan), sources=["H_0_3_c4_pu140.GenWeight"]) #org.mergeSamples(targetSpec=gopts("hh_bbtt_c3_pu140", r.kRed), sources=["hh_bbtt_c3_pu140"]) #org.mergeSamples(targetSpec=gopts("hh_bbtt_c4_pu140", r.kMagenta), sources=["hh_bbtt_c4_pu140"]) org.scale(1.0 / fb) #org.scale(toPdf=True) supy.plotter( org, pdfFileName=self.pdfFileName(org.tag), printImperfectCalcPageIfEmpty=False, printXs=True, blackList=["lumiHisto", "xsHisto", "nJobsHisto"], rowColors=[r.kBlack, r.kViolet + 4], doLog=False, fitFunc=lambda x: self.profFit(x, "b_v4"), showStatBox=True, optStat=1100, ).plotAll() self.dumpFitResults(fileName="fitResults.py")
def conclude(self, pars): org = self.organizer(pars) #org.mergeSamples(targetSpec = {"name":"SingleMu", "color":r.kBlack}, allWithPrefix="SingleMu") #org.scale() supy.plotter( org, pdfFileName=self.pdfFileName(org.tag), #samplesForRatios = ("2010 Data","standard_model"), #sampleLabelsForRatios = ("data","s.m."), #whiteList = ["lowestUnPrescaledTrigger"], #doLog = False, #compactOutput = True, #noSci = True, #pegMinimum = 0.1, blackList=["lumiHisto", "xsHisto", "nJobsHisto"], ).plotAll()
def conclude(self,pars) : rw = pars['reweights']['abbr'] org = self.organizer(pars, verbose = True ) org.mergeSamples(targetSpec = {"name":"Data 2012", "color":r.kBlack, "markerStyle":20}, sources=getattr(self,'muons' if pars['lepton']['name']=='mu' else 'electrons')('.jw') ) org.mergeSamples(targetSpec={"name":"t#bar{t}", "color":r.kViolet}, sources=['ttj_ph.wAG.pu.sf','ttj_ph.wQG.pu.sf','ttj_ph.wQQ.pu.sf','ttj_ph.wGG.pu.sf'], keepSources=True) org.mergeSamples(targetSpec={"name":"Wbb", "color":r.kRed}, allWithPrefix='wbb') org.mergeSamples(targetSpec={"name":"W", "color":28}, allWithPrefix='w') org.mergeSamples(targetSpec={"name":"DY", "color":r.kYellow}, allWithPrefix="dy") org.mergeSamples(targetSpec={"name":"t", "color":r.kWhite}, sources=['.'.join([s,rw,'sf']) for s in self.single_top() if 'top_t_' in s], keepSources=True) org.mergeSamples(targetSpec={"name":"t_", "color":r.kWhite}, sources=['.'.join([s,rw,'sf']) for s in self.single_top() if 'tbar_t_' in s], keepSources=True) org.mergeSamples(targetSpec={"name":"Single", "color":r.kGray}, sources=['.'.join([s,rw,'sf']) for s in self.single_top()]) org.mergeSamples(targetSpec={"name":"St.Model", "color":r.kGreen+2}, sources=["t#bar{t}","W","DY","Single"], keepSources=True) try: self.skimStats(org) self.printTable(org) self.skimControl(org) except: pass org.scale( lumiToUseInAbsenceOfData = 19590, toPdf=False ) names = [ss["name"] for ss in org.samples] kwargs = {"detailedCalculables": False, "blackList":["lumiHisto","xsHisto","nJobsHisto"], "samplesForRatios" : next(iter(filter(lambda x: x[0] in names and x[1] in names, [("Data 2012","St.Model")])), ("","")), "sampleLabelsForRatios" : ("data","s.m."), "detailedCalculables" : True, "rowColors" : self.rowcolors, "rowCycle" : 100, "omit2D" : True, } #supy.plotter(org, pdfFileName = self.pdfFileName(org.tag+"_log"), doLog=True, pegMinimum=0.01, **kwargs ).plotAll() supy.plotter(org, pdfFileName = self.pdfFileName(org.tag+"_nolog"), doLog=False, **kwargs ).plotAll()
def conclude(self, pars): org = self.organizer(pars, prefixesNoScale=["efficiency_"]) supy.utils.printSkimResults(org) def gopts(name="", color=1): return { "name": name, "color": color, "markerStyle": 1, "lineWidth": 2, "goptions": "ehist" } c = pars["tag"] org.mergeSamples(targetSpec=gopts("hh_bb#tau#tau", r.kRed), sources=["hh_bbtt_%s_20_skim" % c]) keep = pars["keepSources"] if keep: org.mergeSamples(targetSpec=gopts("tt_0_6", r.kBlue), sources=["tt_%s_0_6_skim.GenWeight" % c]) org.mergeSamples(targetSpec=gopts("tt_6_11", r.kGreen), sources=["tt_%s_6_11_skim.GenWeight" % c]) org.mergeSamples(targetSpec=gopts("tt_11_17", r.kCyan), sources=["tt_%s_11_17_skim.GenWeight" % c]) org.mergeSamples(targetSpec=gopts("tt_17_25", r.kMagenta), sources=["tt_%s_17_25_skim.GenWeight" % c]) org.mergeSamples(targetSpec=gopts("tt_25_1k", r.kOrange), sources=["tt_%s_25_1k_skim.GenWeight" % c]) org.mergeSamples(targetSpec=gopts("tt", r.kBlue), allWithPrefix="tt_", keepSources=keep) bj = [ "B_skim", "Bj_0_3_skim", "Bj_3_6_skim", "Bj_6_11_skim", "Bj_11_18_skim", "Bj_18_27_skim", "Bj_27_37_skim", "Bj_37_1k_skim" ] org.mergeSamples(targetSpec=gopts("Bj", r.kGreen), sources=[x + ".GenWeight" for x in bj], keepSources=keep) tb = [ "tB_0_5_skim", "tB_5_9_skim", "tB_9_15_skim", "tB_15_22_skim", "tB_22_1k_skim" ] org.mergeSamples(targetSpec=gopts("tB", r.kCyan), sources=[x + ".GenWeight" for x in tb], keepSources=keep) ttb = [ "ttB_0_9_skim", "ttB_9_16_skim", "ttB_16_25_skim", "ttB_25_1k_skim" ] org.mergeSamples(targetSpec=gopts("ttB", r.kBlue - 8), sources=[x + ".GenWeight" for x in ttb], keepSources=keep) h = ["H_0_3_skim", "H_3_8_skim", "H_8_15_skim", "H_15_1k_skim"] org.mergeSamples(targetSpec=gopts("H", r.kOrange - 3), sources=[x + ".GenWeight" for x in h], keepSources=keep) if keep: org.mergeSamples(targetSpec=gopts("BB_0_3", r.kBlue), sources=["BB_%s_0_3_skim.GenWeight" % c]) org.mergeSamples(targetSpec=gopts("BB_3_7", r.kGreen), sources=["BB_%s_3_7_skim.GenWeight" % c]) org.mergeSamples(targetSpec=gopts("BB_7_13", r.kCyan), sources=["BB_%s_7_13_skim.GenWeight" % c]) org.mergeSamples(targetSpec=gopts("BB_13_21", r.kMagenta), sources=["BB_%s_13_21_skim.GenWeight" % c]) org.mergeSamples(targetSpec=gopts("BB_21_1k", r.kOrange), sources=["BB_%s_21_1k_skim.GenWeight" % c]) org.mergeSamples(targetSpec=gopts("BB", r.kBlack), allWithPrefix="BB_", keepSources=keep) if keep: org.mergeSamples(targetSpec=gopts("BBB_0_6", r.kBlue), sources=["BBB_%s_0_6_skim.GenWeight" % c]) org.mergeSamples(targetSpec=gopts("BBB_6_13", r.kGreen), sources=["BBB_%s_6_13_skim.GenWeight" % c]) org.mergeSamples(targetSpec=gopts("BBB_13_1k", r.kCyan), sources=["BBB_%s_13_1k_skim.GenWeight" % c]) org.mergeSamples(targetSpec=gopts("BBB", r.kBlack), allWithPrefix="BBB_", keepSources=keep) bjj = [ "Bjj_0_7_skim", "Bjj_7_14_skim", "Bjj_14_23_skim", "Bjj_23_34_skim" ] org.mergeSamples(targetSpec=gopts("Bjj", r.kYellow), sources=[x + ".GenWeight" for x in bjj], keepSources=keep) ll = [ "LL_0_1_skim", "LL_1_2_skim", "LL_2_5_skim", "LL_5_9_skim", "LL_9_14_skim", "LL_14_1k_skim" ] org.mergeSamples(targetSpec=gopts("LL", r.kBlack), sources=[x + ".GenWeight" for x in ll], keepSources=keep) llb = ["LLB_0_4_skim", "LLB_4_9_skim", "LLB_9_1k_skim"] org.mergeSamples(targetSpec=gopts("LLB", r.kBlack), sources=[x + ".GenWeight" for x in llb], keepSources=keep) tj = [ "tj_0_5_skim", "tj_5_10_skim", "tj_10_16_skim", "tj_16_24_skim", "tj_24_1k_skim" ] org.mergeSamples(targetSpec=gopts("tj", r.kPink), sources=[x + ".GenWeight" for x in tj], keepSources=keep) others = ["BB", "BBB", "Bjj", "LL", "LLB", "tj"] org.mergeSamples(targetSpec=gopts("others", r.kMagenta), sources=others, keepSources=False) sm = ["tt", "Bj", "tB", "ttB", "H", "others"] org.mergeSamples(targetSpec=gopts("SM", r.kBlack), sources=sm, keepSources=True) org.scale(3.e3 / fb) #org.scale(toPdf=True) supy.plotter( org, pdfFileName=self.pdfFileName(org.tag), printImperfectCalcPageIfEmpty=False, printXs=True, blackList=["lumiHisto", "xsHisto", "nJobsHisto"], rowColors=[r.kBlack, r.kViolet + 4], doLog=True, pegMinimum=0.1, #optStat=1100, optStat=1111, #fitFunc=self.profFit, showStatBox=False, latexYieldTable=False, samplesForRatios=("hh_bb#tau#tau", "SM"), sampleLabelsForRatios=("hh", "SM"), foms=[ { "value": lambda x, y: x / y, "uncRel": lambda x, y, xUnc, yUnc: math.sqrt((xUnc / x)**2 + (yUnc / y)**2), "label": lambda x, y: "%s/%s" % (x, y), }, # #{"value": lambda x,y: x/(y**0.5), # # "uncRel": lambda x, y, xUnc, yUnc: math.sqrt((xUnc/x)**2 + (yUnc/y/2.)**2), # # "label": lambda x,y: "%s/sqrt(%s)" % (x, y), # # }, ], ).plotAll()
def conclude(self, pars): org = self.organizer(pars, prefixesNoScale=["efficiency_"]) def gopts(name="", color=1): return {"name":name, "color":color, "markerStyle":1, "lineWidth":2, "goptions":"ehist"} #org.mergeSamples(targetSpec=gopts("tt_0_6", r.kBlue), sources=["tt_0_6.GenWeight"]) #org.mergeSamples(targetSpec=gopts("tt_6_11", r.kGreen), sources=["tt_6_11.GenWeight"]) #org.mergeSamples(targetSpec=gopts("tt_11_17", r.kCyan), sources=["tt_11_17.GenWeight"]) #org.mergeSamples(targetSpec=gopts("tt_17_25", r.kMagenta), sources=["tt_17_25.GenWeight"]) #org.mergeSamples(targetSpec=gopts("tt_25_1k", r.kOrange), sources=["tt_25_1k.GenWeight"]) #org.mergeSamples(targetSpec=gopts("tt", r.kBlack), allWithPrefix="tt_") #org.mergeSamples(targetSpec=gopts("BB_0_3", r.kGreen), sources=["BB_0_3.GenWeight"]) #org.mergeSamples(targetSpec=gopts("BB_3_7", r.kCyan), sources=["BB_3_7.GenWeight"]) #org.mergeSamples(targetSpec=gopts("BB_7_13", r.kMagenta), sources=["BB_7_13.GenWeight"]) #org.mergeSamples(targetSpec=gopts("BB_13_21", r.kOrange), sources=["BB_13_21.GenWeight"]) org.mergeSamples(targetSpec=gopts("BB", r.kBlue), allWithPrefix="BB_") #org.mergeSamples(targetSpec=gopts("BBB_0_6", r.kBlue), sources=["BBB_0_6.GenWeight"]) #org.mergeSamples(targetSpec=gopts("BBB_6_13", r.kCyan), sources=["BBB_6_13.GenWeight"]) #org.mergeSamples(targetSpec=gopts("BBB_13_1k", r.kMagenta), sources=["BBB_13_1k.GenWeight"]) org.mergeSamples(targetSpec=gopts("BBB", r.kGreen), allWithPrefix="BBB_") org.mergeSamples(targetSpec=gopts("hh_bb#tau#tau", r.kRed), sources=["hh_bbtt"]) #org.mergeSamples(targetSpec=gopts("tt*w", r.kBlue), sources=["tt0_600.GenWeight"]) #org.mergeSamples(targetSpec=gopts("tt*1.0", r.kBlack) sources=["tt0_600"]) org.mergeSamples(targetSpec=gopts("H_c0_pu0", r.kBlack), sources=["H_0_3_c0_pu0.GenWeight"]) org.mergeSamples(targetSpec=gopts("H_c0_pu140", r.kBlue), sources=["H_0_3_c0_pu140.GenWeight"]) org.mergeSamples(targetSpec=gopts("H_c3_pu140", r.kGreen), sources=["H_0_3_c3_pu140.GenWeight"]) org.mergeSamples(targetSpec=gopts("H_c4_pu140", r.kCyan), sources=["H_0_3_c4_pu140.GenWeight"]) org.mergeSamples(targetSpec=gopts("tt_pu0", r.kBlack), sources=["tt_0_6_pu0.GenWeight"]) org.mergeSamples(targetSpec=gopts("tt_pu50", r.kOrange+7), sources=["tt_0_6_pu50.GenWeight"]) org.mergeSamples(targetSpec=gopts("tt_pu140", r.kBlue), sources=["tt_0_6_pu140.GenWeight"]) org.mergeSamples(targetSpec=gopts("tt_c0_pu0", r.kBlack), sources=["tt_0_6_c0_pu0.GenWeight"]) org.mergeSamples(targetSpec=gopts("tt_c0_pu140", r.kBlue), sources=["tt_0_6_c0_pu140.GenWeight"]) org.mergeSamples(targetSpec=gopts("tt_c3_pu140", r.kGreen), sources=["tt_0_6_c3_pu140.GenWeight"]) org.mergeSamples(targetSpec=gopts("tt_c4_pu140", r.kCyan), sources=["tt_0_6_c4_pu140.GenWeight"]) org.mergeSamples(targetSpec=gopts("hh_bbtt_c3_pu140", r.kRed), sources=["hh_bbtt_c3_pu140"]) org.mergeSamples(targetSpec=gopts("hh_bbtt_c4_pu140", r.kMagenta), sources=["hh_bbtt_c4_pu140"]) #org.mergeSamples(targetSpec=gopts("hh_bbtt_c4_pu140", r.kGreen), sources=["hh_bbtt_c4_pu140"]) #org.mergeSamples(targetSpec=gopts("rho<80", r.kBlack), sources=["hh_bbtt_c4_pu140.rho.le.80"]) #org.mergeSamples(targetSpec=gopts("90<rho<100", r.kRed), sources=["hh_bbtt_c4_pu140.90.le.rho.le.100"]) #org.mergeSamples(targetSpec=gopts("110<rho", r.kBlue), sources=["hh_bbtt_c4_pu140.110.le.rho"]) org.scale(1.0/fb) #org.scale(toPdf=True) supy.plotter(org, pdfFileName=self.pdfFileName(org.tag), printImperfectCalcPageIfEmpty=False, printXs=True, blackList=["lumiHisto", "xsHisto", "nJobsHisto"], rowColors=[r.kBlack, r.kViolet+4], doLog=False, showStatBox=False, latexYieldTable=False, #samplesForRatios=("hh_bb#tau#tau", "tt"), sampleLabelsForRatios=("hh", "tt"), foms=[{"value": lambda x, y: x/y, "uncRel": lambda x, y, xUnc, yUnc: math.sqrt((xUnc/x)**2 + (yUnc/y)**2), "label": lambda x, y:"%s/%s" % (x, y), }, #{"value": lambda x,y: x/(y**0.5), # "uncRel": lambda x, y, xUnc, yUnc: math.sqrt((xUnc/x)**2 + (yUnc/y/2.)**2), # "label": lambda x,y: "%s/sqrt(%s)" % (x, y), # }, #{"value": lambda x, y: x/(((a*y)**2+y)**0.5), # "uncRel": lambda x, y, xUnc, yUnc: math.sqrt((xUnc/x)**2 +\ # (yUnc*(2*a*a*y+1)/(a*a*y*y+y)/2.)**2\ # ), # "label": lambda x,y: "%s/r(%s+%s^2/%3.0f)" % (x, y, y, 1/a/a), # }, ], ).plotAll()
def conclude(self,pars): org = self.organizer(pars, verbose = True ) supy.plotter(org, pdfFileName = self.pdfFileName(org.tag), doLog=False ).plotAll()