def train(self, df, model_path=''):
        '''
        隐语义模型训练
        :param df: 格式包含该三列 --》 userid,iteamid,rating
        :param model_path:模型持久化地址,默认为空,不执行持久化
        :return: 训练好的模型
        '''
        # 数据类型转换为 surprise 需要的格式
        data = Dataset.load_from_df(df, self.reader)
        trainset = data.build_full_trainset()

        algo_lfm = SVDpp()
        algo_lfm.fit(trainset)
        if model_path: surprise.dump.dump(model_path, algo=algo_lfm, verbose=1)
        return algo_lfm
示例#2
0
def run_svd(data, params, svdpp=False):
    '''Returns trained SVD model based on matrix factorization'''
    if svdpp:
        alg = SVDpp(n_factors=utils.get_param(params, 'n_factors'),
                    n_epochs=utils.get_param(params, 'n_epochs'),
                    lr_all=utils.get_param(params, 'learning_rate'),
                    reg_all=utils.get_param(params, 'reg'),
                    verbose=True)
    else:
        alg = SVD(biased=utils.get_param(params, 'biased'),
                  n_factors=utils.get_param(params, 'n_factors'),
                  n_epochs=utils.get_param(params, 'n_epochs'),
                  lr_all=utils.get_param(params, 'learning_rate'),
                  reg_all=utils.get_param(params, 'reg'),
                  verbose=True)
    alg.fit(data)
    return alg