def test(net, P, T, vP, vT, filename, epochs, mutation_rate = 0.05, population_size = 50): logger.info("Running genetic test for: " + filename + ' ' + str(epochs)) print("Number of patients with events: " + str(T[:, 1].sum())) print("Number of censored patients: " + str((1 - T[:, 1]).sum())) outputs = net.sim(P) c_index = get_C_index(T, outputs) logger.info("C index = " + str(c_index)) try: net = train_evolutionary(net, (P, T), (vP, vT), epochs, error_function = c_index_error, population_size = population_size, mutation_chance = mutation_rate) outputs = net.sim(P) c_index = get_C_index(T, outputs) logger.info("C index = " + str(c_index)) #net = traingd(net, (P, T), (None, None), epochs * 2, learning_rate = 1, block_size = 0, error_module = cox_error) except FloatingPointError: print('Aaawww....') outputs = net.sim(P) c_index = get_C_index(T, outputs) logger.info("C index test = " + str(c_index)) outputs = net.sim(vP) c_index = get_C_index(vT, outputs) logger.info("C index vald = " + str(c_index)) if plt: plot_network_weights(net) return net
def test(net, P, T, filename, epochs, learning_rate, block_size): logger.info("Running test for: " + filename + ' ' + str(epochs) + ", rate: " + str(learning_rate) + ", block_size: " + str(block_size)) print("Number of patients with events: " + str(T[:, 1].sum())) print("Number of censored patients: " + str((1 - T[:, 1]).sum())) outputs = net.sim(P) c_index = get_C_index(T, outputs) logger.info("C index = " + str(c_index)) try: #net = train_cox(net, (P, T), (None, None), timeslots, epochs, learning_rate = learning_rate) net = traingd(net, (P, T), (None, None), epochs, learning_rate, block_size, error_module = cox_error) except FloatingPointError: print('Aaawww....') outputs = net.sim(P) c_index = get_C_index(T, outputs) logger.info("C index = " + str(c_index)) plot_network_weights(net) return net