def _planetdotang( a, b, theta, r_dot_adj=0.23, dot_color="#C8C5E2", r_dot_size=0.6, rot_x=0.0, rot_y=0.0, dot_op=1.0, dot_str_op=1.0 ): if theta < 180: r_dot_adj = r_dot_adj * -1.0 r_dot = _rellipse(a, b, theta) r_trans = svg.rotate(theta, rot_x, rot_y) # print(r_dot) ret_dot = svg.Fig( svg.Dots( [(r_dot, 0)], svg.make_symbol( "dot_{}_{}".format(theta, dot_color), fill=dot_color, fill_opacity=dot_op, stroke="black", stroke_width="0.15pt", stroke_opacity=dot_str_op, ), r_dot_size, r_dot_size, ), trans=r_trans, ) # print(theta) # print(r_dot*cos(radians(theta)), r_dot*sin(radians(theta))) return ret_dot
def _orbitdot( a, b, theta, r_dot_adj=0.1, color="#C8C5E2", r_dot_size=0.6, rot_x=0.0, rot_y=0.0, dot_op=1.0, dot_str_op=1.0 ): if theta > 180: r_dot_adj = r_dot_adj * -1.0 r_dot = _rellipse(a, b, theta) # +r_dot_adj*sin(theta) r_trans = svg.rotate(theta, rot_x, rot_y) # print(r_dot) ret_dot = svg.Fig( svg.Dots( [(r_dot, 0)], svg.make_symbol( "dot_{}_{}".format(theta, color), fill=color, fill_opacity=dot_op, stroke="black", stroke_width="0.15pt", stroke_opacity=dot_str_op, ), r_dot_size, r_dot_size, ), trans=r_trans, ) # print(defs) return ret_dot
def mpoplot(userdates, master_scale=15, demo=False): """ ... explain what this does... """ outdir = '../sample_data/output' # if demo: # shutil.rmtree(outdir) # os.makedirs(outdir) # else: # if not os.path.exists(outdir): # os.makedirs(outdir) # else: # print('\n Uh-oh! The directory {} already exists.'.format( # outdir)) # if yesno(' Do you want to replace it?'): # shutil.rmtree(outdir) # os.makedirs(outdir) # else: # return # Clear and load the kernels that this program requires. spice.kclear() spice.furnsh('epys.mk') # A graphic will be created for each 'date' in 'dates': for date in userdates: et = spice.str2et(date) datestr = (spice.et2utc(et, 'ISOC', 0)) # -- Outer frame ------------------------------------------------- dist_scl = 250.0 elts = getorbelts(date) arg_peri = elts[4] # Opacity of degree frame and Venus graphic frame_op = 0.5 # # Process JD time into calendar time strings # datestr = spice.et2utc(et, 'ISOC', 0) date = '{} {}'.format(datestr.split('T')[0], datestr.split('T')[1]) edate, etime = date.split() eyear = "{}".format(edate.split('-')[0]) emonth = "{0:02d}".format(int(edate.split('-')[1])) eday = "{0:02d}".format(int(edate.split('-')[2])) epoch = "{}/{}/{}".format(eday, emonth, eyear) ep_name = "{}{}{}".format(eyear, emonth, eday) frame = _outerframe(epoch, frmSize=master_scale, frm_op=frame_op, mpoargp=arg_peri) # -- Mercury Planet -------------------------------------------------- # tru_ano = 90 # look_from = 270 # x1 = "{}%".format((100*math.sin(math.radians((tru_ano+90)/2.)))) # x2 = "{}%".format(100-(100*sin(radians((tru_ano+90)/2.)))) angs = range(0, 360, 1) plt.plot(angs, ["{}".format((100 * math.sin(math.radians(x / 2)))) for x in angs], 'yo-') plt.plot(angs, ["{}".format(100 - (100 * math.sin(math.radians(x / 2)))) for x in angs], 'ro-') # plt.show() stop1 = "#C8C5E2" # stop2 = "#373163" defs = svg.SVG("defs", svg.SVG("linearGradient", svg.SVG("stop", stop_color=stop1, stop_opacity=1, offset="45%"), svg.SVG("stop", stop_color=stop1, stop_opacity=1, offset="55%"), x1="0%", y1="0%", x2="100%", y2="0%", spreadMethod="pad", id="mercGrad") ) # defs = svg.SVG('defs', # svg.SVG('radialGradient', # svg.SVG('stop', # stop_color=stop1, # stop_opacity=1, # offset='38%'), # svg.SVG('stop', # stop_color=stop2, # stop_opacity=1, # offset='40%'), # cx='50%', cy='50%', # fx='230%', fy='50%', # r='300%', # spreadMethod='pad', # id='mercGrad') # ) merc_rad = 2439.99 # km merc_rad_scl = merc_rad / dist_scl merc_ball = svg.Ellipse(0, 0, 0, merc_rad_scl, merc_rad_scl, fill="url(#mercGrad)", stroke_width="0.15pt") # -- MPO Orbit -- mpo_orb_ecc = 0.163229 mpo_orb_sma = 3394.0 # km mpo_orb_sma_scl = mpo_orb_sma / dist_scl mpo_orb_smi_scl = mpo_orb_sma_scl * math.sqrt(1 - mpo_orb_ecc ** 2) # Make things cleaner a = mpo_orb_sma_scl b = mpo_orb_smi_scl mpo_orb = svg.Ellipse(-math.sqrt(a ** 2 - b ** 2), 0, 0, a, b, fill="none", stroke_width="0.25pt") # apof = 8 mpo_orb_apses = svg.Line(-_rellipse(a, b, 180) - 5, 0, _rellipse(a, b, 0) + 10, 0, stroke_width="0.15pt", stroke_dasharray="2, 2") dot_angs = range(0, 360, 20) dots = [_orbitdot(a, b, x, color="black") for x in dot_angs] mpo_orb_dots = svg.Fig() for dot in dots: mpo_orb_dots.d.append(dot) mpo_orb_trans = svg.rotate(arg_peri, 0, 0) mpo_orb_plot = svg.Fig(mpo_orb, mpo_orb_apses, mpo_orb_dots, trans=mpo_orb_trans) # -- Direction arrow ------------------------------------------------- dirarend = svg.make_marker("dirarrowend", "arrow_end", fill_opacity=0.2) dirarend.attr["markerWidth"] = 7.5 x1, y1 = master_scale + 1, 0.4, x2, y2 = master_scale + 1, 1 dirarwstrt = svg.Line(x1, y1, x2, y2, stroke_width=".4pt", stroke_opacity=0.2, arrow_end=dirarend) dirarw = svg.Fig(dirarwstrt, trans="x*cos(y), x*sin(y)") # -- Apsis view ------------------------------------------------------ apvx, apvy = master_scale + 3, -master_scale - 3 apsisviewball = svg.Ellipse(apvx, apvy, 0, merc_rad_scl * 0.25, merc_rad_scl * 0.25, fill="url(#mercGrad)", stroke_width="0.15pt") apsisviewlats = svg.Fig() for x in range(-9, 10, 3): hscl = math.sin(math.radians(x * 10)) wscl = math.cos(math.radians(x * 10)) x1 = apvx - (merc_rad_scl * 0.25 * wscl) y1 = apvy + (merc_rad_scl * 0.25 * hscl) x2 = apvx + (merc_rad_scl * 0.25 * wscl) y2 = apvy + (merc_rad_scl * 0.25 * hscl) apsisviewlats.d.append(svg.Line(x1, y1, x2, y2, stroke_width=".2pt", stroke_opacity=0.4)) apvarend = svg.make_marker("apvarrowend", "arrow_end", fill_opacity=0.6) apvarend.attr["markerWidth"] = 3.0 apvarend.attr["markerHeight"] = 3.0 x1, y1 = apvx, apvy - 3 x2, y2 = apvx, apvy + 3 apsisvieworbit = svg.Line(x1, y1, x2, y2, stroke_width=".4pt", stroke_opacity=0.6, arrow_end=apvarend) xd = apvx yd = apvy + (merc_rad_scl * 0.25 * math.sin(math.radians(arg_peri))) apsisviewdot = svg.Fig(svg.Dots([(xd, yd)], svg.make_symbol("apsisdot", fill="black", fill_opacity=0.6 ), 0.6, 0.6 ) ) apsisview = svg.Fig(apsisviewball, apsisviewlats, apsisvieworbit, apsisviewdot) # -- Build final figure ---------------------------------------------- wa = master_scale * 1.5 svgout = svg.Fig(frame, merc_ball, mpo_orb_plot, dirarw, apsisview ).SVG(svg.window(-wa, wa, -wa, wa)) svgout.prepend(defs) argp = int(arg_peri) svgout.save(os.path.join(outdir, "mpo_orbit_plot_{}_{}.svg".format(ep_name, argp) ) )
def planetsplot(userdates=None, delta="1d", master_scale=15, demo=False, showplots=False): """ ... explain what this does... """ outdir = './sample_data/output' # if demo: # shutil.rmtree(outdir) # os.makedirs(outdir) # else: # if not os.path.exists(outdir): # os.makedirs(outdir) # else: # print('\n Uh-oh! The directory {} already exists.'.format( # outdir)) # if yesno(' Do you want to replace it?'): # shutil.rmtree(outdir) # os.makedirs(outdir) # else: # return orbitdata = _gatherorbitdata(delta=delta, scale=master_scale) ets, dates, orbits, argps, argpxys, nus = orbitdata if userdates is None: userdates = dates if showplots: plt.subplot(1, 1, 1) for xy in orbits: plt.plot([x[0] for x in xy], [y[1] for y in xy], 'rx', label='SPICE') for xy in argpxys: plt.plot(xy[0], xy[1], 'go') plt.show() if len(orbits[0]) == len(dates) == len(ets): # This rotation will put the Hermean perihelion on the X-axis. rotang = -argps[0] # Load the kernels that this program requires. spice.kclear() this_dir = os.path.dirname(os.path.realpath(__file__)) spice.furnsh(os.path.join(this_dir, 'epys.mk')) output_files = [] # A graphic will be created for each 'date' in 'userdates': for date in userdates: # get the position-index of the 'et' in the 'orbitdata' list # of 'ets' that is closest to the 'date' in the 'userdates' et = spice.str2et(date) dx = ets.index(getclosest(ets, et)) # -- Outer frame ------------------------------------------------- # Opacity of degree frame and Venus graphic frame_op = 0.8 # Process calendar time strings date = '{} {}'.format(spice.et2utc(et, 'ISOC', 0).split('T')[0], spice.et2utc(et, 'ISOC', 0).split('T')[1]) edate, etime = date.split() eyear = "{}".format(edate.split('-')[0]) emonth = "{0:02d}".format(int(edate.split('-')[1])) eday = "{0:02d}".format(int(edate.split('-')[2])) epoch = "{}/{}/{}".format(eday, emonth, eyear) ep_name = "{}{}{}_{}".format(eyear, emonth, eday, etime.replace(':', '')) frame = _outerframe(epoch, frmSize=master_scale, frm_op=frame_op) # -- First Point of Aires ---------------------------------------- # merc_loan = 48.331 # merc_argp = 29.124 arend = svg.make_marker("fopa_arrowend", "arrow_end", fill_opacity=0.4) x1, y1 = 10, 0 x2, y2 = master_scale * 1.3, 0 fpoa = svg.Line(x1, y1, x2, y2, stroke_width=".4pt", stroke_opacity=0.4, arrow_end=arend) xp = (x2 * math.cos(math.radians(rotang)) - y2 * math.sin(math.radians(rotang))) yp = (x2 * math.sin(math.radians(rotang)) + y2 * math.cos(math.radians(rotang))) fpoa_text = svg.Text(xp + 6.5, yp - 1.0, "First Point of Aries", font_size=3, opacity=0.75) fpoa = svg.Fig(svg.Fig(fpoa, trans=svg.rotate(rotang, 0, 0)), fpoa_text) # -- Some containers --------------------------------------------- orbs = [] circles = [] defs = svg.SVG("defs") # -- Orbit circles ----------------------------------------------- # Build the SVG for each orbit. for orbit in orbits: if orbits.index(orbit) == 1: orbit_op = 0.4 else: orbit_op = 1.0 # Mercury's orbit will have perihelion on the X-axis circles.append(svg.Fig(svg.Poly(orbit, stroke_width=".25pt", stroke_opacity=orbit_op), trans=svg.rotate(rotang, 0, 0))) # -- Planet orbs ------------------------------------------------- points = [orbits[0][dx], orbits[1][dx], orbits[2][dx]] # Build the planet orb for each planet for this chart. for point in points: # Planetary inputs ... if points.index(point) == 0: name = "MERCURY" nu = math.degrees(math.atan2(point[1], point[0])) + rotang if nu < 0: nu = nu + 360 # print(nu, nu-rotang, rotang) nu = "{0:03d}".format(int(nu)) if points.index(point) == 1: name = "VENUS" if points.index(point) == 2: name = "EARTH" # point_r = [x/AU for x in point] orb, grad = _planetdiag(name, point, rotang) orbs.append(orb) defs.append(grad) # -- Build final figure ------------------------------------------ wa = master_scale * 1.5 svgout = svg.Fig(fpoa, frame, circles[0], circles[1], circles[2], orbs[0], orbs[1], orbs[2] ).SVG(svg.window(-wa, wa, -wa, wa)) svgout.prepend(defs) out_path = os.path.join(outdir, "merc_orbit_plot_{}_{}.svg".format( ep_name, nu)) svgout.save(out_path) output_files.append(out_path) spice.kclear() return output_files else: # You'll jump to hear if the epochs for all 3 planets are not equal. print("There is an epoch error between the planet time values...")
def _planetdiag(name, rpos, rotang=0.0, orb_scl=1.0, frmSizecl=10.0, diag_op=1.0): # print("Building {} diagram...".format(name)) colors = [] if name == "MERCURY": colors = ["#C8C5E2", "#373163"] if name == "VENUS": diag_op = 0.4 colors = ["#EDE051", "#393506"] if name == "EARTH": colors = ["#00AFEF", "#003C52"] # colorurl="url(#{}Grad)".format(name[0:4].lower()) # Scale the position vector ... # rpos = [x*frmSizecl*orb_scl for x in rpos] # Simplify ... r_x = rpos[0] r_y = rpos[1] gradrot = math.degrees(math.atan2(r_y, r_x)) # Build a white ball for background ... ball_bg = _planetdot(name, rpos, r_dot_size=2.0 * orb_scl, dot_color="white", dot_str_op=diag_op) # ... and a color ball for foreground. ball_fg = _planetdot(name, rpos, r_dot_size=2.0 * orb_scl, dot_color=colors[0], dot_op=diag_op, dot_str_op=diag_op) # Stack coloured ball on top of white background ball... ball = svg.Fig(ball_bg, ball_fg) grad = _gradient(name[0:4].lower(), colors, gradrot, rotang, r_x, r_y) if name == "MERCURY": # print("Buidling MPO orbit schematic...") # MPO line scaling factor mpo_line_sf = 2.0 # MPO line start and end points mpo_line_st = r_x - orb_scl * mpo_line_sf mpo_line_en = r_x + orb_scl * mpo_line_sf * 0.720811474 node_size = 0.15 x1 = mpo_line_st - node_size x2 = mpo_line_st + node_size y1 = r_y - node_size y2 = r_y + node_size dec_node = svg.Fig(svg.Rect(x1=x1, y1=y1, x2=x2, y2=y2, fill="black"), trans=svg.rotate(0, mpo_line_st, r_y)) x1 = mpo_line_en - node_size x2 = mpo_line_en + node_size y1 = r_y - node_size y2 = r_y + node_size asc_node = svg.Fig(svg.Rect(x1=x1, y1=y1, x2=x2, y2=y2, fill="black"), trans=svg.rotate(45, mpo_line_en, r_y)) mpo_line = svg.Fig(svg.Line(mpo_line_st, r_y, mpo_line_en, r_y, stroke_width="0.15pt",), asc_node, dec_node, trans=svg.rotate(-rotang, r_x, r_y)) # r_trans = rotate(theta, 0, 0) ball.d.append(svg.Fig(mpo_line)) return svg.Fig(ball, trans=svg.rotate(rotang, 0, 0)), grad