def tower_loss(scope): """Calculate the total loss on a single tower running the CIFAR model. Args: scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0' Returns: Tensor of shape [] containing the total loss for a batch of data """ # Get images and labels for CIFAR-10. images, labels = svhn.distorted_inputs() # Build inference Graph. logits = svhn.inference(images) # Build the portion of the Graph calculating the losses. Note that we will # assemble the total_loss using a custom function below. _ = svhn.loss(logits, labels) # Assemble all of the losses for the current tower only. losses = tf.get_collection('losses', scope) # Calculate the total loss for the current tower. total_loss = tf.add_n(losses, name='total_loss') # Attach a scalar summary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses + [total_loss]: # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. loss_name = re.sub('%s_[0-9]*/' % svhn.TOWER_NAME, '', l.op.name) tf.summary.scalar(loss_name, l) return total_loss
def train(): with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False) # Get images and labels for CIFAR-10. images, labels = svhn.distorted_inputs() # Build a Graph that computes the logits predictions from the # inference model. logits = svhn.inference(images) # Calculate loss. loss = svhn.loss(logits, labels) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = svhn.train(loss, global_step) # Create a saver. saver = tf.train.Saver(tf.all_variables()) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Build an initialization operation to run below. init = tf.initialize_all_variables() # Start running operations on the Graph. sess = tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)) sess.run(init) # Start the queue runners. tf.train.start_queue_runners(sess=sess) summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, graph_def=sess.graph_def) for step in xrange(FLAGS.max_steps): start_time = time.time() _, loss_value = sess.run([train_op, loss]) duration = time.time() - start_time assert not np.isnan(loss_value), "Model diverged with loss = NaN" if step % 10 == 0: num_examples_per_step = FLAGS.batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = "%s: step %d, loss = %.2f (%.1f examples/sec; %.3f " "sec/batch)" print(format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch)) if step % 100 == 0: summary_str = sess.run(summary_op) summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically. if step % 1000 == 0 or (step + 1) == FLAGS.max_steps: checkpoint_path = os.path.join(FLAGS.train_dir, "model.ckpt") saver.save(sess, checkpoint_path, global_step=step)
def train(): """Train CIFAR-10 for a number of steps.""" with tf.Graph().as_default(): global_step = tf.contrib.framework.get_or_create_global_step() # Force input pipeline to CPU:0 to avoid operations sometimes ending up on # GPU and resulting in a slow down. with tf.device('/cpu:0'): images, labels = svhn.distorted_inputs() # Build a Graph that computes the logits predictions from the # inference model. logits = svhn.inference(images) # Calculate loss. loss = svhn.loss(logits, labels) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = svhn.train(loss, global_step) class _LoggerHook(tf.train.SessionRunHook): """Logs loss and runtime.""" def begin(self): self._step = -1 self._start_time = time.time() def before_run(self, run_context): self._step += 1 return tf.train.SessionRunArgs(loss) # Asks for loss value. def after_run(self, run_context, run_values): if self._step % FLAGS.log_frequency == 0: current_time = time.time() duration = current_time - self._start_time self._start_time = current_time loss_value = run_values.results examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration sec_per_batch = float(duration / FLAGS.log_frequency) format_str = ( '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print(format_str % (datetime.now(), self._step, loss_value, examples_per_sec, sec_per_batch)) with tf.train.MonitoredTrainingSession( checkpoint_dir=FLAGS.train_dir, hooks=[ tf.train.StopAtStepHook(last_step=FLAGS.max_steps), tf.train.NanTensorHook(loss), _LoggerHook() ], config=tf.ConfigProto(log_device_placement=FLAGS. log_device_placement)) as mon_sess: while not mon_sess.should_stop(): mon_sess.run(train_op)
def train(): """Train SVHN for a number of steps.""" with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False) # Get images and labels for SVHN with mat file images, labels = svhn.distorted_inputs() # Build a Graph that computes the logits predictions from # inference model. logits = svhn.inference(images) # Calculate loss. loss = svhn.loss(logits, labels) # Build a Graph that trains the model with one batch of examples # and updates the model parm train_op = svhn.train(loss, global_step) # Create a saver. saver = tf.train.Saver(tf.all_variables()) # Build an initialization operation to run. init = tf.initialize_all_variables() # Start running operations on the Graph. sess = tf.Session(config=tf.ConfigProto( log_device_placement=FLAGS.log_device_placement)) sess.run(init) # Start the queue runners. tf.train.start_queue_runners(sess=sess) # summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph) for step in xrange(FLAGS.max_steps): start_time = time.time() _, loss_value = sess.run([train_op, loss]) duration = time.time() - start_time assert not np.isnan(loss_value), 'Model diverged with loss = NaN' if step % 10 == 0: num_examples_per_step = FLAGS.batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ( '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print(format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch)) # Save the model checkpoint periodically. if step % 1000 == 0 or (step + 1) == FLAGS.max_steps: checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step)
def get_data(FLAGS, dataset): tr_data = None tr_label = None image_size = None channel_num = None output_num = None if dataset == 'cifar10': tr_data, tr_label = cifar10_input.distorted_inputs( FLAGS.cifar_data_dir, FLAGS.batch_size) image_size = cifar10_input.IMAGE_SIZE channel_num = 3 output_num = 10 elif dataset == 'svhn': tr_data, tr_label = svhn.distorted_inputs(FLAGS.svhn_data_dir, FLAGS.batch_size) image_size = svhn.IMAGE_SIZE channel_num = 3 output_num = 10 elif dataset == 'cifar20': tr_data, tr_label = cifar100_input.distorted_inputs( 20, FLAGS.cifar100_data_dir, FLAGS.batch_size) image_size = cifar100_input.IMAGE_SIZE channel_num = 3 output_num = 20 elif dataset == 'mnist1': tr_data, tr_label = binary_mnist_input.read_train_data( FLAGS, FLAGS.a1, FLAGS.a2) image_size = 28 channel_num = 1 output_num = 2 elif dataset == 'mnist2': tr_data, tr_label = binary_mnist_input.read_train_data( FLAGS, FLAGS.b1, FLAGS.b2) image_size = 28 channel_num = 1 output_num = 2 elif dataset == 'mnist3': tr_data, tr_label = binary_mnist_input.read_train_data( FLAGS, FLAGS.c1, FLAGS.c2) image_size = 28 channel_num = 1 output_num = 2 elif dataset == 'mnist4': tr_data, tr_label = binary_mnist_input.read_train_data( FLAGS, FLAGS.d1, FLAGS.d2) image_size = 28 channel_num = 1 output_num = 2 else: raise ValueError("No such dataset") return tr_data, tr_label, image_size, channel_num, output_num
def train(): """Train CIFAR-10 for a number of steps.""" with tf.Graph().as_default(), tf.device('/cpu:0'): # Create a variable to count the number of train() calls. This equals the # number of batches processed * FLAGS.num_gpus. global_step = tf.get_variable( 'global_step', [], initializer=tf.constant_initializer(0), trainable=False) # Calculate the learning rate schedule. num_batches_per_epoch = (svhn.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size) decay_steps = int(num_batches_per_epoch * svhn.NUM_EPOCHS_PER_DECAY) # Decay the learning rate exponentially based on the number of steps. lr = tf.train.exponential_decay(svhn.INITIAL_LEARNING_RATE, global_step, decay_steps, svhn.LEARNING_RATE_DECAY_FACTOR, staircase=True) # Create an optimizer that performs gradient descent. opt = tf.train.GradientDescentOptimizer(lr) # Get images and labels for CIFAR-10. images, labels = svhn.distorted_inputs() batch_queue = tf.contrib.slim.prefetch_queue.prefetch_queue( [images, labels], capacity=2 * FLAGS.num_gpus) # Calculate the gradients for each model tower. tower_grads = [] with tf.variable_scope(tf.get_variable_scope()): for i in xrange(FLAGS.num_gpus): with tf.device('/gpu:%d' % i): with tf.name_scope('%s_%d' % (svhn.TOWER_NAME, i)) as scope: # Dequeues one batch for the GPU image_batch, label_batch = batch_queue.dequeue() # Calculate the loss for one tower of the CIFAR model. This function # constructs the entire CIFAR model but shares the variables across # all towers. loss = tower_loss(scope, image_batch, label_batch) # Reuse variables for the next tower. tf.get_variable_scope().reuse_variables() # Retain the summaries from the final tower. summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope) # Calculate the gradients for the batch of data on this CIFAR tower. grads = opt.compute_gradients(loss) # Keep track of the gradients across all towers. tower_grads.append(grads) # We must calculate the mean of each gradient. Note that this is the # synchronization point across all towers. grads = average_gradients(tower_grads) # Add a summary to track the learning rate. summaries.append(tf.summary.scalar('learning_rate', lr)) # Add histograms for gradients. for grad, var in grads: if grad is not None: summaries.append(tf.summary.histogram(var.op.name + '/gradients', grad)) # Apply the gradients to adjust the shared variables. apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) # Add histograms for trainable variables. for var in tf.trainable_variables(): summaries.append(tf.summary.histogram(var.op.name, var)) # Track the moving averages of all trainable variables. variable_averages = tf.train.ExponentialMovingAverage( svhn.MOVING_AVERAGE_DECAY, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) # Group all updates to into a single train op. train_op = tf.group(apply_gradient_op, variables_averages_op) # Create a saver. saver = tf.train.Saver(tf.global_variables()) # Build the summary operation from the last tower summaries. summary_op = tf.summary.merge(summaries) # Build an initialization operation to run below. init = tf.global_variables_initializer() # Start running operations on the Graph. allow_soft_placement must be set to # True to build towers on GPU, as some of the ops do not have GPU # implementations. sess = tf.Session(config=tf.ConfigProto( allow_soft_placement=True, log_device_placement=FLAGS.log_device_placement)) sess.run(init) # Start the queue runners. tf.train.start_queue_runners(sess=sess) summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph) for step in xrange(FLAGS.max_steps): start_time = time.time() _, loss_value = sess.run([train_op, loss]) duration = time.time() - start_time assert not np.isnan(loss_value), 'Model diverged with loss = NaN' if step % 10 == 0: num_examples_per_step = FLAGS.batch_size * FLAGS.num_gpus examples_per_sec = num_examples_per_step / duration sec_per_batch = duration / FLAGS.num_gpus format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print (format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch)) if step % 100 == 0: summary_str = sess.run(summary_op) summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically. if step % 1000 == 0 or (step + 1) == FLAGS.max_steps: checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step)
def train(): with tf.Graph().as_default() as graph: global_step = tf.Variable(0, trainable=False) # Get images and labels for CIFAR-10. images, labels = svhn.distorted_inputs() logits1, logits2, logits3, logits4, logits5, logits6 = svhn.net_1( images, 0.71) loss = svhn.loss(logits1, logits2, logits3, logits4, logits5, logits6, labels) pred = tf.stack([tf.argmax(tf.nn.softmax(logits1), 1),\ tf.argmax(tf.nn.softmax(logits2), 1),\ tf.argmax(tf.nn.softmax(logits3), 1),\ tf.argmax(tf.nn.softmax(logits4), 1),\ tf.argmax(tf.nn.softmax(logits5), 1),\ tf.argmax(tf.nn.softmax(logits6), 1)], axis=1) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = svhn.train(loss, global_step) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Build an initialization operation to run below. init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) variable_averages = tf.train.ExponentialMovingAverage( svhn.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) """ Save Whole Model to model.pb for v in tf.trainable_variables(): # assign the ExponentialMovingAverage value to the real variable name = v.name.split(':')[0]+'/ExponentialMovingAverage' sess.run(tf.assign(v, variables_to_restore[name])) out_graph_def = graph_util.convert_variables_to_constants(sess, graph.as_graph_def(), ['out1/Add','out2/Add','out3/Add','out4/Add','out5/Add','out6/Add', 'shuffle_batch']) with tf.gfile.GFile("model.pb", "wb") as f: f.write(out_graph_def.SerializeToString()) """ tf.train.start_queue_runners(sess=sess) summary_writer = tf.summary.FileWriter(FLAGS.train_dir, graph=sess.graph) for step in xrange(FLAGS.max_steps): start_time = time.time() _, loss_value, prediction, label = sess.run( [train_op, loss, pred, labels]) duration = time.time() - start_time assert not np.isnan( loss_value), 'Model diverged with loss = NaN' if step % 100 == 0: num_examples_per_step = FLAGS.batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) true_count = 0 for x in range(num_examples_per_step): current_pred = np.array( prediction[x]).astype(int).tostring() correct_pred = np.array( label[x]).astype(int).tostring() if current_pred == correct_pred: true_count += 1 format_str = ( '%s: step %d, loss = %.6f, acc = %.6f%% (%.1f examples/sec; %.3f ' 'sec/batch)') print(format_str % (datetime.now(), step, loss_value, 100 * (true_count / num_examples_per_step), examples_per_sec, sec_per_batch)) # print(prediction) if step % 100 == 0: summary_str = sess.run(summary_op) summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically. if step % 1000 == 0 or (step + 1) == FLAGS.max_steps: checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step)