def get_results(ag, label): accuracy, false_positives, false_negatives, c_value= find_best(ag, c_values,\ thresholds) print "" #print stuff here print "Permutation: " + label print "Accuracy: " + str(accuracy) print "False positives: " + str(false_positives) print "False negatives: " + str(false_negatives) print "c_value: " + str(c_value) print ""
def get_results(sa, label): ag= create_strict_article_group_from_sa(sa, 1000, 20) accuracy, false_positives, false_negatives, c_value= find_best(ag, c_values,\ thresholds) print "" #print stuff here print "Permutation: " + label print "Accuracy: " + str(accuracy) print "False positives: " + str(false_positives) print "False negatives: " + str(false_negatives) print "c_value: " + str(c_value) print ""
def get_results(ag, label): if os.path.exists("positives.ex"): os.remove("positives.ex") os.remove("negatives.ex") train_sets, validation_sets, test_set = subsets(ag.svm_ready_examples, 5) for threshold in thresholds: accuracy, true_plus, true_minus, false_positives, false_negatives, c_value = find_best( c_values, threshold, train_sets, validation_sets, test_set ) print str(threshold) + "\t" + str(false_positives / (true_minus + false_negatives)) + "\t" + str( true_plus / (true_plus + false_positives) )