示例#1
0
def SVO_passband(pb, pbzp=None, List = False):
    """
    Read a SVO passband using https://github.com/hover2pi/svo_filters.


    Parameters
    ----------
    pb : str
        pysynphot obsmode or obsmode listed in `pbzptmag.txt`
    pbzp : float, optional
        AB magnitude zeropoint of the passband
    List : Bool, optional
        List all filters available through SVO

    Returns
    -------
    pb : :py:class:`pysynphot.ArrayBandpass` or :py:class:`pysynphot.obsbandpass.ObsModeBandpass`
        The passband data.
        Has ``dtype=[('wave', '<f8'), ('throughput', '<f8')]``
    pbzp : float
        passband AB zeropoint - potentially NaN if this was not supplied. If NaN
        this can be computed assuming an AB source - i.e. a source with a flux
        density of 3631 jy has magnitude = 0 in the bandpass.

    Notes
    -----
        Note that this is a straight read of a single passband from a file. The
        zeropoint returned is whatever was provided (even if the value is not
        useful) or NaN. To load the passband and get the correct zeropoint, use
        :py:func:`source_synphot.passband.load_pbs`

    See Also
    --------
    :py:func:`astropy.table.Table.read`
    :py:func:`pysynphot.ObsBandpass`
    """

    from svo_filters import svo
    from astropy import units as u

    if List:
        print(list(svo.filters()['Band']))

    if pbzp is None:
        pbzp = np.nan

    try:
        pbdata = svo.Filter(pb)
        wav = pbdata.wave.to(u.Angstrom).flatten().value
        wav, ind = np.unique(wav, return_index=True)
        out = S.ArrayBandpass(wav, pbdata.throughput.flatten()[ind], waveunits='Angstrom', name=pb)
    except (OSError,IOError) as e:
        message = 'No passband called {} in SVO'.format(pb)
        out = None

    if out is None:
        raise ValueError(message)

    return out, pbzp
示例#2
0
def limb_darkening():
    """The limb darkening form page"""

    # Get all the available filters
    filters = svo.filters()['Band']

    # Make HTML for filters
    filt_list = '\n'.join(['<option value="{0}"{1}> {0}</option>'.format(b, ' selected' if b == 'Kepler.K' else '') for b in filters])

    return render_template('limb_darkening.html', filters=filt_list)
示例#3
0
import numpy as np
from svo_filters import svo

EXOCTK_DATA = os.environ.get('EXOCTK_DATA')
MODELGRID_DIR = os.path.join(EXOCTK_DATA, 'modelgrid/')
FORTGRID_DIR = os.path.join(EXOCTK_DATA, 'fortney/')
EXOCTKLOG_DIR = os.path.join(EXOCTK_DATA, 'exoctk_log/')
GENERICGRID_DIR = os.path.join(EXOCTK_DATA, 'generic/')

# Supported profiles
PROFILES = ['uniform', 'linear', 'quadratic',
            'square-root', 'logarithmic', 'exponential',
            '3-parameter', '4-parameter']

# Supported filters
FILTERS = svo.filters()

# Set the version
VERSION = '0.2'


def color_gen(colormap='viridis', key=None, n=10):
    """Color generator for Bokeh plots

    Parameters
    ----------
    colormap: str, sequence
        The name of the color map

    Returns
    -------
示例#4
0
def limb_darkening():
    """The limb darkening form page"""

    # Get all the available filters
    filters = svo.filters()['Band']

    # Make HTML for filters
    filt_list = '\n'.join(['<option value="{0}"{1}> {0}</option>'.format(b, ' selected' if b == 'Kepler.K' else '') for b in filters])

    if request.method == 'POST':
        if request.form['submit'] == "Retrieve Parameters":
            target_name = request.form['targetname']
            data = get_target_data(target_name)

            feh = data['Fe/H']
            teff = data['Teff']
            logg = data['stellar_gravity']
            
            limbVars = {'targname':target_name, 'feh': feh, 'teff':teff, 'logg':logg}

            return render_template('limb_darkening.html', limbVars=limbVars, filters=filt_list)

        elif request.form['submit'] == "Calculate Coefficients":
            # Log the form inputs
            try:
                log_exoctk.log_form_input(request.form, 'limb_darkening', DB)
            except:
                pass

            # Get the input from the form
            modeldir = request.form['modeldir']
            profiles = list(filter(None, [request.form.get(pf) for pf in PROFILES]))
            bandpass = request.form['bandpass']

            # protect against injection attempts
            bandpass = bandpass.replace('<', '&lt')
            profiles = [str(p).replace('<', '&lt') for p in profiles]

            # Get models from local directory if necessary
            if modeldir == 'default':
                modeldir = MODELGRID_DIR

            # Throw error if input params are invalid
            try:
                teff = float(request.form['teff'])
                logg = float(request.form['logg'])
                feh = float(request.form['feh'])
                mu_min = float(request.form['mu_min'])
            except IOError:
                teff = str(request.form['teff']).replace('<', '&lt')
                logg = str(request.form['logg']).replace('<', '&lt')
                feh = str(request.form['feh']).replace('<', '&lt')
                message = 'Could not calculate limb darkening for those parameters.'

                return render_template('limb_darkening_error.html', teff=teff,
                                    logg=logg, feh=feh, band=bandpass or 'None',
                                    profile=', '.join(profiles), models=modeldir,
                                    message=message)

            n_bins = request.form.get('n_bins')
            pixels_per_bin = request.form.get('pixels_per_bin')
            wl_min = request.form.get('wave_min')
            wl_max = request.form.get('wave_max')

            model_grid = ModelGrid(modeldir, resolution=500)

            # No data, redirect to the error page
            if not hasattr(model_grid, 'data'):
                message = 'Could not find a model grid to load. Please check the path.'

                return render_template('limb_darkening_error.html', teff=teff,
                                    logg=logg, feh=feh, band=bandpass or 'None',
                                    profile=', '.join(profiles),
                                    models=model_grid.path, message=message)

            else:

                if len(model_grid.data) == 0:

                    message = 'Could not calculate limb darkening with those parameters.'

                    return render_template('limb_darkening_error.html', teff=teff,
                                        logg=logg, feh=feh,
                                        band=bandpass or 'None',
                                        profile=', '.join(profiles),
                                        models=model_grid.path, message=message)

            # Trim the grid to the correct wavelength
            # to speed up calculations, if a bandpass is given
            min_max = model_grid.wave_rng

            try:

                kwargs = {'n_bins': int(n_bins)} if n_bins else \
                        {'pixels_per_bin': int(pixels_per_bin)} if pixels_per_bin else\
                        {}

                if wl_min and wl_max:
                    kwargs['wl_min'] = float(wl_min) * u.um
                    kwargs['wl_max'] = float(wl_max) * u.um

                # Make filter object
                bandpass = svo.Filter(bandpass, **kwargs)
                bp_name = bandpass.name
                bk_plot = bandpass.plot(draw=False)
                bk_plot.plot_width = 580
                bk_plot.plot_height = 280
                min_max = (bandpass.wave_min.value, bandpass.wave_max.value)
                n_bins = bandpass.n_bins

                js_resources = INLINE.render_js()
                css_resources = INLINE.render_css()
                filt_script, filt_plot = components(bk_plot)

            except:
                message = 'Insufficient filter information. Please complete the form and try again!'

                return render_template('limb_darkening_error.html', teff=teff,
                                    logg=logg, feh=feh, band=bandpass or 'None',
                                    profile=', '.join(profiles),
                                    models=model_grid.path, message=message)

            # Trim the grid to nearby grid points to speed up calculation
            full_rng = [model_grid.Teff_vals, model_grid.logg_vals, model_grid.FeH_vals]
            trim_rng = find_closest(full_rng, [teff, logg, feh], n=1, values=True)

            if not trim_rng:

                message = 'Insufficient models grid points to calculate coefficients.'

                return render_template('limb_darkening_error.html', teff=teff,
                                    logg=logg, feh=feh, band=bp_name,
                                    profile=', '.join(profiles),
                                    models=model_grid.path, message=message)

            elif not profiles:

                message = 'No limb darkening profiles have been selected. Please select at least one.'

                return render_template('limb_darkening_error.html', teff=teff,
                                    logg=logg, feh=feh, band=bp_name,
                                    profile=', '.join(profiles),
                                    models=model_grid.path, message=message)

            else:

                try:
                    model_grid.customize(Teff_rng=trim_rng[0], logg_rng=trim_rng[1],
                                        FeH_rng=trim_rng[2], wave_rng=min_max)

                except:

                    message = 'Insufficient wavelength coverage to calculate coefficients.'

                    return render_template('limb_darkening_error.html', teff=teff,
                                        logg=logg, feh=feh, band=bp_name,
                                        profile=', '.join(profiles),
                                        models=model_grid.path, message=message)

            # Calculate the coefficients for each profile
            ld = lf.LDC(model_grid)
            for prof in profiles:
                ld.calculate(teff, logg, feh, prof, mu_min=mu_min, bandpass=bandpass)

            # Draw a figure for each wavelength bin
            tabs = []
            for wav in np.unique(ld.results['wave_eff']):

                # Plot it
                TOOLS = 'box_zoom, box_select, crosshair, reset, hover'
                fig = figure(tools=TOOLS, x_range=Range1d(0, 1), y_range=Range1d(0, 1),
                            plot_width=800, plot_height=400)
                ld.plot(wave_eff=wav, fig=fig)

                # Plot formatting
                fig.legend.location = 'bottom_right'
                fig.xaxis.axis_label = 'mu'
                fig.yaxis.axis_label = 'Intensity'

                tabs.append(Panel(child=fig, title=str(wav)))

            final = Tabs(tabs=tabs)

            # Get HTML
            script, div = components(final)

            # Store the tables as a string
            file_as_string = str(ld.results[[c for c in ld.results.dtype.names if
                                            ld.results.dtype[c] != object]])
            r_eff = mu_eff = ''

            # Make a table for each profile with a row for each wavelength bin
            profile_tables = []
            for profile in profiles:

                # Make LaTeX for polynomials
                latex = lf.ld_profile(profile, latex=True)
                poly = '\({}\)'.format(latex).replace('*', '\cdot').replace('\e', 'e')

                # Make the table into LaTeX
                table = filter_table(ld.results, profile=profile)
                co_cols = [c for c in ld.results.colnames if (c.startswith('c') or
                        c.startswith('e')) and len(c) == 2 and not
                        np.all([np.isnan(i) for i in table[c]])]
                table = table[['wave_min', 'wave_max'] + co_cols]
                table.rename_column('wave_min', '\(\lambda_\mbox{min}\hspace{5px}(\mu m)\)')
                table.rename_column('wave_max', '\(\lambda_\mbox{max}\hspace{5px}(\mu m)\)')

                # Add the results to the lists
                html_table = '\n'.join(table.pformat(max_width=500, html=True))\
                            .replace('<table', '<table id="myTable" class="table table-striped table-hover"')

                # Add the table title
                header = '<br></br><strong>{}</strong><br><p>\(I(\mu)/I(\mu=1)\) = {}</p>'.format(profile, poly)
                html_table = header + html_table

                profile_tables.append(html_table)

            return render_template('limb_darkening_results.html', teff=teff,
                                logg=logg, feh=feh, band=bp_name, mu=mu_eff,
                                profile=', '.join(profiles), r=r_eff,
                                models=model_grid.path, table=profile_tables,
                                script=script, plot=div,
                                file_as_string=repr(file_as_string),
                                filt_plot=filt_plot, filt_script=filt_script,
                                js=js_resources, css=css_resources)

    return render_template('limb_darkening.html', limbVars={}, filters=filt_list)