def __init__(self, N, width, height, grid=10, seed=None, viewer=False): """Initialize the environment methods.""" if seed is None: super(RandomWalkSwarmEnvironmentModel, self).__init__(seed=None) else: super(RandomWalkSwarmEnvironmentModel, self).__init__(seed) self.num_agents = N self.grid = Grid(width, height, grid) self.viewer = viewer self.schedule = SimultaneousActivation(self) self.hub = Hub(id=2, location=(0, 0), radius=5) self.grid.add_object_to_grid(self.hub.location, self.hub) self.site = Sites(id=2, location=(25, 25), radius=5) self.grid.add_object_to_grid(self.site.location, self.site) self.agents = [] for i in range(self.num_agents): a = SwarmAgentRandomWalk(i, self) self.schedule.add(a) x = 0 y = 0 a.location = (x, y) a.direction = -2.3561944901923448 self.grid.add_object_to_grid((x, y), a) self.agents.append(a) if self.viewer: self.ui = UI((width, height), [self.hub], self.agents, [self.site])
def build_environment_from_json(self): """Build env from jsondata.""" jsondata = JsonData.load_json_file(filename) # Create a instance of JsonData to store object that # needs to be sent to UI self.render = JsonData() self.render.objects = {} for name in jsondata.keys(): obj = eval(name.capitalize()) self.render.objects[name] = self.create_environment_object( jsondata, obj) self.hub = self.render.objects['hub'][0] try: self.foods = [] for site in self.render.objects['sites']: self.site = site # self.render.objects['sites'][0] for i in range(self.num_agents): f = Food( i, location=self.site.location, radius=self.site.radius) f.agent_name = None self.grid.add_object_to_grid(f.location, f) self.foods.append(f) except KeyError: pass if self.viewer: self.ui = UI( (self.width, self.height), [self.hub], self.agents, [self.site], food=self.foods)
class SingleCarryDropReturnSwarmEnvironmentModel(Model): """A environment to model swarms.""" def __init__(self, N, width, height, grid=10, seed=None, viewer=False): if seed is None: super(SingleCarryDropReturnSwarmEnvironmentModel, self).__init__(seed=None) else: super(SingleCarryDropReturnSwarmEnvironmentModel, self).__init__(seed) self.num_agents = N self.grid = Grid(width, height, grid) self.viewer = viewer self.schedule = SimultaneousActivation(self) self.hub = Hub(id=2, location=(0, 0), radius=5) self.grid.add_object_to_grid(self.hub.location, self.hub) self.site = Sites(id=3, location=(-35, -5), radius=5) self.grid.add_object_to_grid(self.site.location, self.site) self.agents = [] self.foods = [] for i in range(self.num_agents): f = Food(i, location=(-35, -5), radius=5) self.grid.add_object_to_grid(f.location, f) self.foods.append(f) for i in range(self.num_agents): # a = SwarmAgentRandomSingleCarryDropReturn(i, self) a = SwarmAgentHandCodedForaging(i, self) self.schedule.add(a) x = -45 y = -45 a.location = (x, y) a.direction = -2.3561944901923448 self.grid.add_object_to_grid((x, y), a) self.agents.append(a) if self.viewer: self.ui = UI((width, height), [self.hub], self.agents, [self.site], food=self.foods) def step(self): self.schedule.step() if self.viewer: self.ui.step()
def main(): """Block main.""" iteration = 5000 # Create a test environment to visualize env = ViewerModel(100, width, height, 10, iter=iteration, viewer=viewer) # Build environment from json env.build_environment_from_json() # Load a json file containing the phenotype pfileloc = ('/home/aadeshnpn/Documents/BYU/hcmi/swarm/' + 'results/1550156973273193-5000ValidateSForge/') jname = pfileloc + '1550156973273193-4999.json' phenotypes = JsonPhenotypeData.load_json_file(jname)['phenotypes'] # Create the agents in the environment from the sampled behaviors # print (len(phenotypes)) env.create_agents(phenotypes=phenotypes) # Overiding the default viewer properties env.ui = UI((width, height), [env.hub], env.agents, [env.site], food=env.foods) # Iterate and execute each step in the environment for i in range(iteration): env.step() # print('Execution done') # Find if food has been deposited in the hub print('foraging percent', env.foraging_percent())
def main(): """Block main.""" iteration = 9000 # Create a test environment to visualize env = ViewerModel(50, width, height, 10, iter=iteration, viewer=viewer) # Build environment from json env.build_environment_from_json() # Load a json file containing the phenotype pfileloc = '/home/aadeshnpn/Documents/BYU/hcmi/hri/cooperative_transport/1538447335350COT/' jname = pfileloc + '1538447335350.json' phenotypes = JsonPhenotypeData.load_json_file(jname)['phenotypes'] # Create the agents in the environment from the sampled behaviors # print (len(phenotypes)) env.create_agents(phenotypes=phenotypes[30:90]) # Overiding the default viewer properties env.ui = UI((width, height), [env.hub], env.agents, [env.site], food=env.foods) # Iterate and execute each step in the environment for i in range(iteration): env.step() print('foraging percent', env.foraging_percent()) # print('Execution done') # Find if food has been deposited in the hub grid = env.grid neighbours = grid.get_neighborhood(env.hub.location, 10) food_objects = grid.get_objects_from_list_of_grid('Food', neighbours)
def main(): """Block main.""" iteration = 5000 # Create a test environment to visualize env = ViewerModel(100, width, height, 20, iter=iteration, viewer=viewer) # Build environment from json env.build_environment_from_json() # Load a json file containing the phenotype pfileloc = '/home/aadeshnpn/Documents/BYU/hcmi/hri/thesis/sf/' jname = pfileloc + '1538473090382007.json' phenotypes = JsonPhenotypeData.load_json_file(jname)['phenotypes'] # Create the agents in the environment from the sampled behaviors env.create_agents(phenotypes=phenotypes) # Overiding the default viewer properties env.ui = UI((width, height), [env.hub], env.agents, env.sites, food=env.foods, debris=[]) # Iterate and execute each step in the environment for i in range(iteration): env.step() # print('Execution done') # Find if food has been deposited in the hub grid = env.grid neighbours = grid.get_neighborhood(env.hub.location, 10) food_objects = grid.get_objects_from_list_of_grid('Food', neighbours) for food in food_objects: print('food', food.id, food.location) """
def main(): """Block main.""" iteration = 5000 # Create a test environment to visualize env = ViewerModel(100, width, height, 10, iter=iteration, viewer=viewer) # Build environment from json env.build_environment_from_json() # Load a json file containing the phenotype pfileloc = '/home/aadeshnpn/Documents/BYU/hcmi/hri/nest_maint/1539014820252NestM/' jname = pfileloc + '1539014820252.json' phenotypes = JsonPhenotypeData.load_json_file(jname)['phenotypes'] # Create the agents in the environment from the sampled behaviors print(len(phenotypes)) env.create_agents(phenotypes=phenotypes) # Overiding the default viewer properties env.ui = UI((width, height), [env.hub], env.agents, [], food=[], debris=env.debris) # Iterate and execute each step in the environment for i in range(iteration): env.step() # print('Execution done') # Find if food has been deposited in the hub print('Cleaning Percentage', env.foraging_percent()) print(len(env.debris_cleaned()))
def build_environment_from_json(self): """Build env from jsondata.""" jsondata = JsonData.load_json_file(filename) # Create a instance of JsonData to store object that # needs to be sent to UI self.render = JsonData() self.render.objects = {} for name in jsondata.keys(): obj = eval(name.capitalize()) self.render.objects[name] = self.create_environment_object( jsondata, obj) self.hub = self.render.objects['hub'][0] try: self.debris = [] for i in range(self.num_agents): dx, dy = self.random.randint(1, 10, 2) dx = self.hub.location[0] + dx dy = self.hub.location[1] + dy d = Debris(i, location=(dx, dy), radius=5) d.agent_name = None self.grid.add_object_to_grid(d.location, d) self.debris.append(d) except KeyError: pass # Create a place for the agents to drop the derbis try: self.obstacles = [] for i in range(1): dx, dy = self.random.randint(5, 10, 2) dx = self.hub.location[0] + 25 + dx dy = self.hub.location[1] + 25 + dy o = Obstacles(id=i, location=(dx, dy), radius=10) self.grid.add_object_to_grid(o.location, o) self.obstacles.append(o) except AttributeError: pass if self.viewer: self.ui = UI((self.width, self.height), [self.hub], self.agents, [], food=[], derbis=self.debris)
def create_agents(self, random_init=False, phenotypes=None): """Initialize agents in the environment.""" # Variable to tell how many agents will have the same phenotype bound = np.ceil((self.num_agents * 1.0) / len(phenotypes)) j = 0 # Create agents for i in range(self.num_agents): # print (i, j, self.xmlstrings[j]) a = ExecutingAgent(i, self, xmlstring=phenotypes[j]) self.schedule.add(a) # Add the hub to agents memory a.shared_content['Hub'] = {self.hub} # Initialize the BT. Since the agents are normal agents just # use the phenotype a.construct_bt() if random_init: # Add the agent to a random grid cell x = self.random.randint(-self.grid.width / 2, self.grid.width / 2) y = self.random.randint(-self.grid.height / 2, self.grid.height / 2) else: try: x, y = self.hub.location except AttributeError: x, y = 0, 0 a.location = (x, y) self.grid.add_object_to_grid((x, y), a) a.operation_threshold = 2 # self.num_agents // 10 self.agents.append(a) if (i + 1) % bound == 0: j += 1 if self.viewer: self.ui = UI((100, 100), [self.hub], self.agents, self.site, food=self.foods)
class SimModel(Model): """A environemnt to model swarms.""" def __init__( self, N, width, height, grid=10, iter=100000, xmlstrings=None, seed=None, viewer=False, pname=None, expname='MSFSimulation', agent='SimAgent'): """Initialize the attributes.""" if seed is None: super(SimModel, self).__init__(seed=None) else: super(SimModel, self).__init__(seed) self.runid = datetime.datetime.now().strftime( "%s") + str(self.random.randint(1, 1000, 1)[0]) if pname is None: self.pname = os.getcwd() + '/' + self.runid + expname else: self.pname = pname + '/' + self.runid + expname self.width = width self.height = height self.stepcnt = 1 self.iter = iter self.xmlstrings = xmlstrings self.viewer = viewer # Create db connection connect = Connect('swarm', 'swarm', 'swarm', 'localhost') self.connect = connect.tns_connect() # Fill out the experiment table self.experiment = Experiment( self.connect, self.runid, N, seed, expname, iter, width, height, grid, phenotype=xmlstrings[0]) self.experiment.insert_experiment_simulation() self.sn = self.experiment.sn # Create a folder to store results os.mkdir(self.pname) self.num_agents = N self.grid = Grid(width, height, grid) self.schedule = SimultaneousActivation(self) self.agents = [] bound = np.ceil((self.num_agents * 1.0) / len(self.xmlstrings)) j = 0 # Create agents for i in range(self.num_agents): # print (i, j, self.xmlstrings[j]) a = eval(agent)(i, self, xmlstring=self.xmlstrings[j]) self.schedule.add(a) # Add the agent to a random grid cell # x = self.random.randint( # -self.grid.width / 2, self.grid.width / 2) x = 0 # y = self.random.randint( # -self.grid.height / 2, self.grid.height / 2) y = 0 a.location = (x, y) self.grid.add_object_to_grid((x, y), a) a.operation_threshold = 2 # self.num_agents // 10 self.agents.append(a) if (i + 1) % bound == 0: j += 1 def create_environment_object(self, jsondata, obj): """Create env from jsondata.""" name = obj.__name__.lower() temp_list = [] i = 0 for json_object in jsondata[name]: location = (json_object["x"], json_object["y"]) if "q_value" in json_object: temp_obj = obj( i, location, json_object["radius"], q_value=json_object[ "q_value"]) else: temp_obj = obj(i, location, json_object["radius"]) self.grid.add_object_to_grid(location, temp_obj) temp_list.append(temp_obj) i += 1 return temp_list def build_environment_from_json(self): """Build env from jsondata.""" jsondata = JsonData.load_json_file(filename) # Create a instance of JsonData to store object that # needs to be sent to UI self.render = JsonData() self.render.objects = {} for name in jsondata.keys(): obj = eval(name.capitalize()) self.render.objects[name] = self.create_environment_object( jsondata, obj) self.hub = self.render.objects['hub'][0] try: self.foods = [] for site in self.render.objects['sites']: self.site = site # self.render.objects['sites'][0] for i in range(self.num_agents): f = Food( i, location=self.site.location, radius=self.site.radius) f.agent_name = None self.grid.add_object_to_grid(f.location, f) self.foods.append(f) except KeyError: pass if self.viewer: self.ui = UI( (self.width, self.height), [self.hub], self.agents, [self.site], food=self.foods) def step(self): """Step through the environment.""" # Gather info from all the agents # self.gather_info() # Next step self.schedule.step() # Increment the step count self.stepcnt += 1 if self.viewer: self.ui.step() def find_higest_performer(self): """Find the best agent.""" fitness = self.agents[0].individual[0].fitness fittest = self.agents[0] for agent in self.agents: if agent.individual[0].fitness > fitness: fittest = agent return fittest def find_higest_food_collector(self): """Find the best agent to collect food.""" fitness = self.agents[0].food_collected fittest = self.agents[0] for agent in self.agents: if agent.food_collected > fitness: fittest = agent return fittest def detect_food_moved(self): """Detect food moved.""" grid = self.grid food_loc = self.site.location neighbours = grid.get_neighborhood(food_loc, 10) food_objects = grid.get_objects_from_list_of_grid('Food', neighbours) # print (food_objects) return food_objects def food_in_hub(self): """Find amount of food in hub.""" grid = self.grid food_loc = self.hub.location neighbours = grid.get_neighborhood(food_loc, 10) food_objects = grid.get_objects_from_list_of_grid('Food', neighbours) return len(food_objects) def food_in_loc(self, loc): """Find amount of food in hub.""" grid = self.grid neighbours = grid.get_neighborhood(loc, 10) food_objects = grid.get_objects_from_list_of_grid('Food', neighbours) return food_objects
class ViewerModel(ForagingModel): """A environemnt to test swarm behavior performance.""" def __init__(self, N, width, height, grid=10, iter=100000, seed=None, name="TestSForge", viewer=True): """Initialize the attributes.""" super(ViewerModel, self).__init__(N, width, height, grid, iter, seed, name, viewer) def create_agents(self, random_init=False, phenotypes=None): """Initialize agents in the environment.""" # Variable to tell how many agents will have the same phenotype bound = np.ceil((self.num_agents * 1.0) / len(phenotypes)) j = 0 # Create agents for i in range(self.num_agents): # print (i, j, self.xmlstrings[j]) a = ExecutingAgent(i, self, xmlstring=phenotypes[j]) self.schedule.add(a) # Add the hub to agents memory a.shared_content['Hub'] = {self.hub} # Initialize the BT. Since the agents are normal agents just # use the phenotype a.construct_bt() if random_init: # Add the agent to a random grid cell x = self.random.randint(-self.grid.width / 2, self.grid.width / 2) y = self.random.randint(-self.grid.height / 2, self.grid.height / 2) else: try: x, y = self.hub.location except AttributeError: x, y = 0, 0 a.location = (x, y) self.grid.add_object_to_grid((x, y), a) a.operation_threshold = 2 # self.num_agents // 10 self.agents.append(a) if (i + 1) % bound == 0: j += 1 if self.viewer: self.ui = UI((100, 100), [self.hub], self.agents, self.site, food=self.foods) def step(self): """Step through the environment.""" # Next step self.schedule.step() # Increment the step count self.stepcnt += 1 # If viewer required do take a step in UI if self.viewer: self.ui.step()