def testvaridx3(self): mu=g.varidx(g.symbol("mu"),4) nu=g.varidx(g.symbol("nu"),4) A=g.symbol("A") self.assertEqual(str(g.indexed(A,mu,nu)),"A~mu~nu") self.assertEqual(str(g.indexed(A,mu,nu.toggle_variance())),"A~mu.nu") self.assertEqual(str(g.indexed(A,mu.toggle_variance(),nu)),"A.mu~nu") self.failUnless(mu.is_contravariant()) self.failUnless(nu.is_contravariant())
def testsimplify(self): mu=g.varidx(g.symbol("mu"),4) nu=g.varidx(g.symbol("nu"),4) A=g.symbol("A") e1=g.indexed(A,mu,mu.toggle_variance()) e2=g.indexed(A,nu,nu.toggle_variance()) self.assertNotEqual(e1,e2) self.assertEqual((e1-e2).simplify_indexed(),0)
def testsubs(self): mu=g.varidx(g.symbol("mu"),4) nu=g.varidx(g.symbol("nu"),4,True) A=g.symbol("A") e=g.indexed(A,mu) self.assertEqual(str(e),"A~mu") self.assertEqual(str(e.subs(mu==nu)),"A.nu") self.assertEqual(str(e.subs(mu==0)),"A~0")
def testdummy(self): i=g.idx(g.symbol("i"),3) j=g.idx(g.symbol("j"),3) k=g.idx(g.symbol("k"),3) l=g.idx(g.symbol("l"),3) A=g.symbol("A") B=g.symbol("B") C=g.symbol("C") e=g.indexed(A,i,j)*g.indexed(B,j,k)+g.indexed(C,k,l,i,l) #can vary from run to run #self.assertEqual(str(e),"C.k.l.i.l+B.j.k*A.i.j") f=e.get_free_indices() self.failUnless(type(f)==list) self.failUnless(f==[i,k] or f==[k,i]) self.failUnless(str(f)=="[.i, .k]" or str(f)=="[.k, .i]") mu=g.varidx(g.symbol("mu"),4) nu=g.varidx(g.symbol("nu"),4) rho=g.varidx(g.symbol("rho"),4) sigma=g.varidx(g.symbol("sigma"),4) e=g.indexed(A,mu,nu)*g.indexed(B,nu.toggle_variance(),rho)+\ g.indexed(C,mu,sigma,rho,sigma.toggle_variance()) self.failUnless(e.get_free_indices()==[mu,rho] or e.get_free_indices()==[rho,mu]) e=g.indexed(A,mu,mu) self.assertEqual(e.get_free_indices(),[mu]) self.assertNotEqual(e.get_free_indices(),[mu.toggle_variance()])
def testeps(self): mu=g.varidx(g.symbol("mu"),4) nu=g.varidx(g.symbol("nu"),4) rho=g.varidx(g.symbol("rho"),4) sig=g.varidx(g.symbol("sig"),4) lam=g.varidx(g.symbol("lam"),4) bet=g.varidx(g.symbol("bet"),4) e=g.lorentz_eps(mu,nu,rho,sig)*g.lorentz_eps(mu.toggle_variance(), nu.toggle_variance(),lam,bet) g.simplify_indexed(e) i=g.idx(g.symbol("i"),3) j=g.idx(g.symbol("j"),3) k=g.idx(g.symbol("k"),3) A=g.symbol("A") B=g.symbol("B") e=g.epsilon_tensor(i,j,k)*g.indexed(A,j)*g.indexed(B,k) self.assertNotEqual(g.simplify_indexed(e),0) e=g.epsilon_tensor(i,j,k)*g.indexed(A,j)*g.indexed(A,k) self.assertEqual(g.simplify_indexed(e),0)
def testmetric(self): mu=g.varidx(g.symbol("mu"),4) nu=g.varidx(g.symbol("nu"),4) rho=g.varidx(g.symbol("rho"),4) A=g.symbol("A") e=g.metric_tensor(mu,nu)*g.indexed(A,nu.toggle_variance(),rho) self.assertEqual(e.simplify_indexed(),g.indexed(A,mu,rho)) self.assertNotEqual(e.simplify_indexed(),g.indexed(A,nu,rho)) e=g.delta_tensor(mu,nu.toggle_variance())*g.metric_tensor(nu,rho) self.assertEqual(e.simplify_indexed(),g.metric_tensor(mu,rho)) e=g.metric_tensor(mu.toggle_variance(),nu.toggle_variance())*\ g.metric_tensor(nu,rho) self.assertEqual(e.simplify_indexed(), g.delta_tensor(mu.toggle_variance(),rho)) e=g.metric_tensor(nu.toggle_variance(),rho.toggle_variance())*\ g.metric_tensor(mu,nu)*(g.delta_tensor(mu.toggle_variance(),rho)+\ g.indexed(A,mu.toggle_variance(),rho)) self.assertEqual((e-(4+g.indexed(A,rho.toggle_variance(),rho))). simplify_indexed(),0)
def testsimplify(self): i=g.idx(g.symbol("i"),3) j=g.idx(g.symbol("i"),3) A=g.symbol("A") B=g.symbol("B") C=g.symbol("C") sp=g.scalar_products() sp.add(A,B,0) sp.add(A,C,0) sp.add(A,A,4) e=g.indexed(A+B,i)*g.indexed(A+C,i) self.assertEqual(e.expand(g.expand_options.expand_indexed). simplify_indexed(sp),4+g.indexed(C,i)*g.indexed(B,i)) self.assertEqual(g.simplify_indexed(e.expand(g.expand_options. expand_indexed),sp),4+g.indexed(C,i)*g.indexed(B,i)) self.assertNotEqual(g.simplify_indexed(e.expand(g.expand_options. expand_indexed)),4+g.indexed(C,i)*g.indexed(B,i)) self.assertNotEqual(g.simplify_indexed(e.expand(g.expand_options. expand_indexed),sp),5+g.indexed(C,i)*g.indexed(B,i)) self.assertNotEqual(g.simplify_indexed(e.expand(g.expand_options. expand_indexed),sp),4+g.indexed(C,i)*g.indexed(B,j))
def testvaridx1(self): i=g.varidx(g.symbol("i"),3) j=g.varidx(g.symbol("j"),3) A=g.symbol("A") self.assertEqual(str(g.indexed(A,i,j)),"A~i~j")
def testidx(self): i=g.idx(g.symbol("i"),3) j=g.idx(g.symbol("j"),3) A=g.symbol("A") self.assertEqual(str(g.indexed(A,i,j)),"A.i.j")
def testsymm(self): i=g.idx(g.symbol("i"),3) j=g.idx(g.symbol("j"),3) k=g.idx(g.symbol("k"),3) l=g.idx(g.symbol("l"),3) A=g.symbol("A") e=g.indexed(A,i,j) e=g.indexed(A,g.sy_none(), i,j) e=g.indexed(A,g.sy_none(0, 1), i,j) e=g.indexed(A,g.sy_none(g.symmetry(0), g.symmetry(1)), i,j) e=g.indexed(A,g.sy_symm(), i,j,k) e=g.indexed(A,g.sy_symm(0,1,2), i,j,k) e=g.indexed(A,g.sy_symm(2,0,1), i,j,k) e=g.indexed(A,g.sy_symm(0,1), i,j,k) e=g.indexed(A,g.sy_none(g.sy_symm(0,1),2), i,j,k) e=g.indexed(A,g.sy_anti(0,2), i,j,k) e=g.indexed(A,g.sy_none(g.sy_anti(0,2),1), i,j,k) e=g.indexed(A,g.sy_symm(g.sy_anti(0,1),g.sy_anti(2,3)), i,j,k,l) e=g.indexed(A,g.sy_cycl(), i,j,k) e=g.indexed(A,g.sy_cycl(0,1,2), i,j,k) #this is a deadlock... bug in ginac? #but nobody really needs that, so I don't care #g.sy_symm(0,1,2,3).add(4).add(5) e=g.indexed(A,g.sy_symm(),i,j)+g.indexed(A,g.sy_symm(),j,i) self.assertEqual(e,2*g.indexed(A,g.sy_symm(), i,j)) e=g.indexed(A,g.sy_anti(),i,j)+g.indexed(A,g.sy_anti(),j,i) self.assertEqual(e,0) e=g.indexed(A,g.sy_anti(),i,j,k)+g.indexed(A,g.sy_anti(),j,i,k) self.assertEqual(e,0)
def testdelta(self): i=g.idx(g.symbol("i"),3) j=g.idx(g.symbol("j"),3) k=g.idx(g.symbol("k"),3) l=g.idx(g.symbol("l"),3) A=g.symbol("A") B=g.symbol("B") e=g.indexed(A,i,j)*g.indexed(B,k,l)*g.delta_tensor(i,k)*\ g.delta_tensor(j,l) self.assertEqual((e-g.indexed(A,k,l)*g.indexed(B,k,l)). simplify_indexed(),0) self.assertEqual((e-g.indexed(B,k,l)*g.indexed(A,k,l)). simplify_indexed(),0) self.assertEqual((e-g.indexed(A,i,l)*g.indexed(B,i,l)). simplify_indexed(),0) self.assertEqual((e-g.indexed(A,i,j)*g.indexed(B,i,j)). simplify_indexed(),0) self.assertNotEqual((e-g.indexed(A,i,i)*g.indexed(B,k,k)). simplify_indexed(),0) self.assertEqual(g.delta_tensor(i,i),3) self.assertNotEqual(g.delta_tensor(i,i),4)