示例#1
0
def run_spiness_prediction(max_n_jobs_gpu=None, max_n_jobs=None):
    if max_n_jobs is None:
        max_n_jobs = global_params.NCORE_TOTAL * 2
    if max_n_jobs_gpu is None:
        max_n_jobs_gpu = global_params.NGPU_TOTAL * 2
    log = initialize_logging('spine_identification',
                             global_params.config.working_dir + '/logs/',
                             overwrite=False)
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)
    pred_key = "spiness"

    # run semantic spine segmentation on multi views
    sd = ssd.get_segmentationdataset("sv")
    # chunk them
    multi_params = chunkify(sd.so_dir_paths, max_n_jobs_gpu)
    # set model properties
    model_kwargs = dict(src=global_params.config.mpath_spiness,
                        multi_gpu=False)
    so_kwargs = dict(working_dir=global_params.config.working_dir)
    pred_kwargs = dict(pred_key=pred_key)
    multi_params = [[par, model_kwargs, so_kwargs, pred_kwargs]
                    for par in multi_params]
    log.info('Starting spine prediction.')
    qu.QSUB_script(multi_params,
                   "predict_spiness_chunked",
                   log=log,
                   n_max_co_processes=global_params.NGPU_TOTAL,
                   n_cores=global_params.NCORES_PER_NODE //
                   global_params.NGPUS_PER_NODE,
                   suffix="",
                   additional_flags="--gres=gpu:1",
                   remove_jobfolder=True)
    log.info('Finished spine prediction.')
    # map semantic spine segmentation of multi views on SSV mesh
    # TODO: CURRENTLY HIGH MEMORY CONSUMPTION
    if not ssd.mapping_dict_exists:
        raise ValueError('Mapping dict does not exist.')
    multi_params = np.array(ssd.ssv_ids, dtype=np.uint)
    nb_svs_per_ssv = np.array(
        [len(ssd.mapping_dict[ssv_id]) for ssv_id in ssd.ssv_ids])
    # sort ssv ids according to their number of SVs (descending)
    multi_params = multi_params[np.argsort(nb_svs_per_ssv)[::-1]]
    multi_params = chunkify(multi_params, max_n_jobs)
    # add ssd parameters
    kwargs_semseg2mesh = dict(semseg_key=pred_key, force_recompute=True)
    multi_params = [(ssv_ids, ssd.version, ssd.version_dict, ssd.working_dir,
                     kwargs_semseg2mesh) for ssv_ids in multi_params]
    log.info('Starting mapping of spine predictions to neurite surfaces.')
    qu.QSUB_script(multi_params,
                   "map_spiness",
                   n_max_co_processes=global_params.NCORE_TOTAL,
                   n_cores=4,
                   suffix="",
                   additional_flags="",
                   remove_jobfolder=True,
                   log=log)
    log.info('Finished spine mapping.')
示例#2
0
def run_spiness_prediction(max_n_jobs_gpu: Optional[int] = None,
                           max_n_jobs: Optional[int] = None):
    """
    Will store semantic spine labels inside``ssv.label_dict('vertex')['spiness]``.

    Todo:
        * run rendering chunk-wise instead of on-the-fly and then perform
          prediction chunk-wise as well, adopt from spiness step.

    Args:
        max_n_jobs_gpu: Number of parallel GPU jobs. Used for the inference.
        max_n_jobs : Number of parallel CPU jobs. Used for the mapping step.
    """
    if max_n_jobs is None:
        max_n_jobs = global_params.NCORE_TOTAL * 2
    if max_n_jobs_gpu is None:
        max_n_jobs_gpu = global_params.NGPU_TOTAL * 2
    log = initialize_logging('spine_identification', global_params.config.working_dir
                             + '/logs/', overwrite=False)
    ssd = SuperSegmentationDataset(working_dir=global_params.config.working_dir)

    # run semantic spine segmentation on multi views
    sd = ssd.get_segmentationdataset("sv")
    # chunk them
    multi_params = chunkify(sd.so_dir_paths, max_n_jobs_gpu)
    # set model properties
    model_kwargs = dict(src=global_params.config.mpath_spiness,
                        multi_gpu=False)
    so_kwargs = dict(working_dir=global_params.config.working_dir)
    pred_kwargs = dict(pred_key=global_params.semseg2mesh_spines['semseg_key'])
    multi_params = [[par, model_kwargs, so_kwargs, pred_kwargs]
                    for par in multi_params]
    log.info('Starting spine prediction.')
    qu.QSUB_script(multi_params, "predict_spiness_chunked", log=log,
                   n_max_co_processes=global_params.NGPU_TOTAL,
                   n_cores=global_params.NCORES_PER_NODE // global_params.NGPUS_PER_NODE,
                   suffix="",  additional_flags="--gres=gpu:1",
                   remove_jobfolder=True)
    log.info('Finished spine prediction.')
    # map semantic spine segmentation of multi views on SSV mesh
    # TODO: CURRENTLY HIGH MEMORY CONSUMPTION
    if not ssd.mapping_dict_exists:
        raise ValueError('Mapping dict does not exist.')
    multi_params = np.array(ssd.ssv_ids, dtype=np.uint)
    nb_svs_per_ssv = np.array([len(ssd.mapping_dict[ssv_id]) for ssv_id
                               in ssd.ssv_ids])
    # sort ssv ids according to their number of SVs (descending)
    multi_params = multi_params[np.argsort(nb_svs_per_ssv)[::-1]]
    multi_params = chunkify(multi_params, max_n_jobs)
    # add ssd parameters
    kwargs_semseg2mesh = global_params.semseg2mesh_spines
    kwargs_semsegforcoords = global_params.semseg2coords_spines
    multi_params = [(ssv_ids, ssd.version, ssd.version_dict, ssd.working_dir,
                     kwargs_semseg2mesh, kwargs_semsegforcoords) for ssv_ids in multi_params]
    log.info('Starting mapping of spine predictions to neurite surfaces.')
    qu.QSUB_script(multi_params, "map_spiness", n_max_co_processes=global_params.NCORE_TOTAL,
                   n_cores=4, suffix="", additional_flags="", remove_jobfolder=True, log=log)
    log.info('Finished spine mapping.')
示例#3
0
def run_axoness_prediction(max_n_jobs_gpu=None, e3=False):
    log = initialize_logging('axon_prediction',
                             global_params.config.working_dir + '/logs/',
                             overwrite=False)
    if max_n_jobs_gpu is None:
        max_n_jobs_gpu = global_params.NGPU_TOTAL * 2
    # here because all qsub jobs will start a script referring to 'global_params.config.working_dir'
    ssd = SuperSegmentationDataset(
        working_dir=global_params.config.working_dir)
    sd = ssd.get_segmentationdataset("sv")
    # chunk them
    multi_params = chunkify(sd.so_dir_paths, max_n_jobs_gpu)
    pred_key = "axoness_probas"  # leave this fixed because it is used all over
    # get model properties
    log.info(
        'Performing axon prediction of neuron views. Labels will be stored '
        'on SV level in the attribute dict with key "{}"'.format(pred_key))
    if e3 is True:
        model_kwargs = 'get_axoness_model_e3'
    else:
        m = get_axoness_model()
        model_kwargs = dict(model_path=m._path,
                            normalize_data=m.normalize_data,
                            imposed_batch_size=m.imposed_batch_size,
                            nb_labels=m.nb_labels,
                            channels_to_load=m.channels_to_load)

    #all other kwargs like obj_type='sv' and version are the current SV SegmentationDataset by default
    so_kwargs = dict(working_dir=global_params.config.working_dir)
    # for axoness views set woglia to True (because glia were removed beforehand),
    #  raw_only to False
    pred_kwargs = dict(woglia=True,
                       pred_key=pred_key,
                       verbose=False,
                       raw_only=False)
    multi_params = [[par, model_kwargs, so_kwargs, pred_kwargs]
                    for par in multi_params]

    if e3 is True:
        # TODO: using two GPUs on a single node seems to be error-prone
        #  -> wb13 froze when processing example_cube=2
        n_cores = global_params.NCORES_PER_NODE // global_params.NGPUS_PER_NODE
        if 'example_cube' in global_params.config.working_dir:
            n_cores = global_params.NCORES_PER_NODE  # do not run two predictions in parallel
        _ = qu.QSUB_script(multi_params,
                           "predict_sv_views_chunked_e3",
                           log=log,
                           n_max_co_processes=global_params.NGPU_TOTAL,
                           n_cores=n_cores,
                           suffix="_axoness",
                           additional_flags="--gres=gpu:1",
                           remove_jobfolder=True)
    else:
        for par in multi_params:
            mk = par[1]
            # Single GPUs are made available for every job via slurm, no need for random assignments.
            mk["init_gpu"] = 0  # np.random.rand(0, 2)
        _ = qu.QSUB_script(multi_params,
                           "predict_sv_views_chunked",
                           log=log,
                           n_max_co_processes=global_params.NGPU_TOTAL // 2,
                           n_cores=global_params.NCORES_PER_NODE,
                           suffix="_axoness",
                           additional_flags="--gres=gpu:1",
                           remove_jobfolder=True)
    log.info('Finished axon prediction. Now checking for missing predictions.')
    res = find_missing_sv_attributes_in_ssv(
        ssd, pred_key, n_cores=global_params.NCORES_PER_NODE)
    if len(res) > 0:
        log.error("Attribute '{}' missing for follwing"
                  " SVs:\n{}".format(pred_key, res))
    else:
        log.info('Success.')
示例#4
0
def run_axoness_prediction(max_n_jobs_gpu: Optional[int] = None,
                           e3: bool = True):
    """
    Run the axoness inference based on the ``img2scalar`` CMN. See
    :func:`~run_semsegaxoness_prediction` for the semantic segmentation model.

    Args:
        max_n_jobs_gpu: Number of parallel jobs.
        e3: If True, use elektronn3 models.

    Notes:
        Requires :func:`~run_create_neuron_ssd`, :func:`~run_neuron_rendering` and
        :func:`~syconn.exec.skeleton.run_skeleton_generation`.
    """
    log = initialize_logging('axon_prediction', global_params.config.working_dir + '/logs/',
                             overwrite=False)
    if max_n_jobs_gpu is None:
        max_n_jobs_gpu = global_params.config.ngpu_total * 2
    # here because all qsub jobs will start a script referring to
    # 'global_params.config.working_dir'
    ssd = SuperSegmentationDataset(working_dir=global_params.config.working_dir)
    sd = ssd.get_segmentationdataset("sv")
    # chunk them
    multi_params = chunkify(sd.so_dir_paths, max_n_jobs_gpu)
    pred_key = "axoness_probas"  # leave this fixed because it is used all over
    # get model properties
    log.info('Performing axon prediction of neuron views. Labels will be stored '
             'on SV level in the attribute dict with key "{}"'.format(pred_key))
    if e3 is True:
        model_kwargs = 'get_axoness_model_e3'
    else:
        m = get_axoness_model()
        model_kwargs = dict(model_path=m._path, normalize_data=m.normalize_data,
                            imposed_batch_size=m.imposed_batch_size, nb_labels=m.nb_labels,
                            channels_to_load=m.channels_to_load)
    
    # all other kwargs like obj_type='sv' and version are the current SV
    # SegmentationDataset by default
    so_kwargs = dict(working_dir=global_params.config.working_dir)
    # for axoness views set woglia to True (because glia were removed beforehand),
    #  raw_only to False
    pred_kwargs = dict(woglia=True, pred_key=pred_key, verbose=False,
                       raw_only=False)
    multi_params = [[par, model_kwargs, so_kwargs, pred_kwargs] for
                    par in multi_params]

    if e3 is True:
        # TODO: using two GPUs on a single node seems to be error-prone
        #  -> wb13 froze when processing example_cube=2
        n_cores = global_params.config['ncores_per_node'] // global_params.config['ngpus_per_node']
        _ = qu.QSUB_script(multi_params, "predict_sv_views_chunked_e3", log=log,
                           n_max_co_processes=global_params.config.ngpu_total,
                           n_cores=n_cores,
                           suffix="_axoness", additional_flags="--gres=gpu:1",
                           remove_jobfolder=True)
    else:
        for par in multi_params:
            mk = par[1]
            # SLURM is GPU aware, no need for random assignments.
            mk["init_gpu"] = 0  # np.random.rand(0, 2)
        _ = qu.QSUB_script(multi_params, "predict_sv_views_chunked", log=log,
                           n_max_co_processes=global_params.config.ngpu_total // 2,
                           n_cores=global_params.config['ncores_per_node'], suffix="_axoness",
                           additional_flags="--gres=gpu:1",
                           remove_jobfolder=True)
    log.info('Finished axon prediction. Now checking for missing predictions.')
    res = find_missing_sv_attributes_in_ssv(ssd, pred_key, n_cores=global_params.config['ncores_per_node'])
    if len(res) > 0:
        log.error("Attribute '{}' missing for follwing"
                  " SVs:\n{}".format(pred_key, res))
    else:
        log.info('Success.')