示例#1
0
    def negate(self, ct):
        """Negate a cipher i.e -(ct_value)

        Args:
            ct (Ciphertext): Ciphertext to be negated.

        Returns:
            A Ciphertext object with value equivalent to result of -(ct_value).
        """
        result = copy.deepcopy(ct.data)

        for i in range(len(result)):
            for j in range(len(result[i])):
                for k in range(len(result[i][j])):
                    result[i][j][k] = negate_mod(ct.data[i][j][k], self.coeff_modulus[j])

        return CipherText(result)
示例#2
0
    def negate(self, ct):
        """Negate a cipher i.e -(ct_value)

        Args:
            ct (Ciphertext): Ciphertext to be negated.

        Returns:
            A Ciphertext object with value equivalent to result of -(ct_value).
        """
        context_data = self.context.context_data_map[ct.param_id]
        coeff_modulus = context_data.param.coeff_modulus
        result = copy.deepcopy(ct.data)

        for i in range(len(result)):
            for j in range(len(coeff_modulus)):
                for k in range(len(result[i][j])):
                    result[i][j][k] = negate_mod(result[i][j][k],
                                                 coeff_modulus[j])

        return CipherText(result, ct.param_id)
示例#3
0
    def sm_mrq(self, input):
        """
        Require: Input in base Bsk U {m_tilde}
        Ensure: Output in base Bsk
        """
        m_tilde_div_2 = self.m_tilde >> 1
        result = []

        # Compute r_m_tilde; The last component of the input is mod m_tilde
        r_m_tilde = []
        for i in range(self.coeff_count):
            r_m_tilde.append(
                negate_mod(
                    multiply_mod(input[-1][i], self.inv_prod_q_mod_m_tilde,
                                 self.m_tilde),
                    self.m_tilde,
                ))

        for k in range(self.base_Bsk.size):
            base_Bsk_elt = self.base_Bsk.base[k]
            inv_m_tilde_mod_Bsk_elt = self.inv_m_tilde_mod_Bsk[k]
            prod_q_mod_Bsk_elt = self.prod_q_mod_Bsk[k]

            temp_list = []
            for i in range(self.coeff_count):
                # We need centered reduction of r_m_tilde modulo Bsk. Note that m_tilde is chosen
                # to be a power of two so we have '>=' below.
                temp = r_m_tilde[i]
                if temp >= m_tilde_div_2:
                    temp += base_Bsk_elt - self.m_tilde

                # Compute (input + q*r_m_tilde)*m_tilde^(-1) mod Bsk
                temp_list.append(((
                    (prod_q_mod_Bsk_elt * temp + input[k][i]) % base_Bsk_elt) *
                                  inv_m_tilde_mod_Bsk_elt) % base_Bsk_elt)

            result.append(temp_list)
        return result
示例#4
0
    def __init__(self, encryption_param):
        n = encryption_param.poly_modulus
        q = encryption_param.coeff_modulus
        t = encryption_param.plain_modulus

        self._coeff_count = n
        self.base_q = RNSBase(q)
        self.base_q_size = len(q)
        self._t = t
        self._base_t_gamma = RNSBase([t, gamma])
        self._base_t_gamma_size = 2
        self.prod_t_gamma_mod_q = [(t * gamma) % q for q in self.base_q.base]
        self._inv_gamma_mod_t = invert_mod(gamma, self._t)

        # Compute -prod(q)^(-1) mod {t, gamma}
        self.neg_inv_q_mod_t_gamma = [0] * self._base_t_gamma_size
        for i in range(self._base_t_gamma_size):
            self.neg_inv_q_mod_t_gamma[i] = self.base_q.base_prod % self._base_t_gamma.base[i]
            self.neg_inv_q_mod_t_gamma[i] = invert_mod(
                self.neg_inv_q_mod_t_gamma[i], self._base_t_gamma.base[i]
            )
            self.neg_inv_q_mod_t_gamma[i] = negate_mod(
                self.neg_inv_q_mod_t_gamma[i], self._base_t_gamma.base[i]
            )
示例#5
0
    def initialize(self):
        base_q_size = len(self.q)
        # In some cases we might need to increase the size of the base B by one, namely we require
        # K*n*t*q^2<q*prod(B)*m_sk, where K takes into account cross terms when larger size
        # ciphertexts are used, and n is the "delta factor" for the ring. We reserve 32 bits
        # for K * n. Here the coeff modulus primes q_i are bounded to be
        # SEAL_USER_MOD_BIT_COUNT_MAX (60) bits, and all primes in B and m_sk are
        # SEAL_INTERNAL_MOD_BIT_COUNT (61) bits.
        total_coeff_bit_count = RNSBase(self.q).base_prod.bit_length()

        base_B_size = base_q_size
        if 32 + self.t.bit_length() + total_coeff_bit_count >= 61 * len(
                self.q) + 61:
            base_B_size += 1

        # Sample primes for B and two more primes: m_sk and gamma.
        baseconv_primes = get_primes(self.coeff_count, 50, base_B_size + 2)
        self.m_sk = baseconv_primes[0]
        self.gamma = baseconv_primes[1]
        base_B_primes = baseconv_primes[2:]

        self.prod_t_gamma_mod_q = [(self.t * self.gamma) % q for q in self.q]
        self.inv_gamma_mod_t = invert_mod(self.gamma, self.t)

        # Set m_tilde_ to a non-prime value
        self.m_tilde = 1 << 32

        # Populate the base arrays
        self.base_q = RNSBase(self.q)
        self.base_B = RNSBase(base_B_primes)
        self.base_Bsk = RNSBase(base_B_primes + [self.m_sk])
        self.base_Bsk_m_tilde = RNSBase(base_B_primes + [self.m_sk] +
                                        [self.m_tilde])

        if self.t != 0:
            self.base_t_gamma_size = 2
            self.base_t_gamma = RNSBase([self.t, self.gamma])

        # Set up BaseConvTool for q --> Bsk
        self.base_q_to_Bsk_conv = BaseConvertor(self.base_q, self.base_Bsk)

        # Set up BaseConvTool for q --> {m_tilde}
        self.base_q_to_m_tilde_conv = BaseConvertor(self.base_q,
                                                    RNSBase([self.m_tilde]))

        # Set up BaseConvTool for B --> q
        self.base_B_to_q_conv = BaseConvertor(self.base_B, self.base_q)

        # Set up BaseConvTool for B --> {m_sk}
        self.base_B_to_m_sk_conv = BaseConvertor(self.base_B,
                                                 RNSBase([self.m_sk]))

        if self.t != 0:
            # Base conversion: convert from q to {t, gamma}
            self.base_q_to_t_gamma_conv = BaseConvertor(
                self.base_q, self.base_t_gamma)

        # Compute prod(q)^(-1) mod m_tilde
        inv_prod_q_mod_m_tilde = self.base_q.base_prod % self.m_tilde
        self.inv_prod_q_mod_m_tilde = invert_mod(inv_prod_q_mod_m_tilde,
                                                 self.m_tilde)

        # Compute m_tilde^(-1) mod Bsk
        self.inv_m_tilde_mod_Bsk = [0] * self.base_Bsk.size
        for i in range(self.base_Bsk.size):
            self.inv_m_tilde_mod_Bsk[i] = invert_mod(
                self.m_tilde % self.base_Bsk.base[i], self.base_Bsk.base[i])

        # Compute prod(q) mod Bsk
        self.prod_q_mod_Bsk = [0] * self.base_Bsk.size
        for i in range(self.base_Bsk.size):
            self.prod_q_mod_Bsk[
                i] = self.base_q.base_prod % self.base_Bsk.base[i]

        # Compute prod(B)^(-1) mod m_sk
        self.inv_prod_B_mod_m_sk = self.base_B.base_prod % self.m_sk
        self.inv_prod_B_mod_m_sk = invert_mod(self.inv_prod_B_mod_m_sk,
                                              self.m_sk)

        # Compute prod(B) mod q
        self.prod_B_mod_q = [0] * self.base_q.size
        for i in range(self.base_q.size):
            self.prod_B_mod_q[i] = self.base_B.base_prod % self.base_q.base[i]

        # Compute prod(q)^(-1) mod Bsk
        self.inv_prod_q_mod_Bsk = [0] * self.base_Bsk.size
        for i in range(self.base_Bsk.size):
            self.inv_prod_q_mod_Bsk[
                i] = self.base_q.base_prod % self.base_Bsk.base[i]
            self.inv_prod_q_mod_Bsk[i] = invert_mod(self.inv_prod_q_mod_Bsk[i],
                                                    self.base_Bsk.base[i])

        if self.t != 0:
            # Compute -prod(q)^(-1) mod {t, gamma}
            self.neg_inv_q_mod_t_gamma = [0] * self.base_t_gamma_size
            for i in range(self.base_t_gamma_size):
                self.neg_inv_q_mod_t_gamma[
                    i] = self.base_q.base_prod % self.base_t_gamma.base[i]
                self.neg_inv_q_mod_t_gamma[i] = invert_mod(
                    self.neg_inv_q_mod_t_gamma[i], self.base_t_gamma.base[i])
                self.neg_inv_q_mod_t_gamma[i] = negate_mod(
                    self.neg_inv_q_mod_t_gamma[i], self.base_t_gamma.base[i])

        # Compute q[last]^(-1) mod q[i] for i = 0..last-1
        # This is used by modulus switching and rescaling
        self.inv_q_last_mod_q = [0] * (base_q_size - 1)
        for i in range(base_q_size - 1):
            self.inv_q_last_mod_q[i] = invert_mod(self.q[-1], self.q[i])