示例#1
0
文件: spdz.py 项目: yiningzeng/PySyft
def spdz_mul(
    cmd: Callable, shares: dict, other_shares, crypto_provider: AbstractWorker, field: int, **kwargs
):
    """Abstractly Multiplies two tensors

    Args:
        cmd: a callable of the equation to be commuted
        shares: a dictionary <location_id -> PointerTensor) of shares corresponding to
            self. Equivalent to calling self.child.
        other_shares: a dictionary <location_id -> PointerTensor) of shares corresponding
            to the tensor being multiplied by self.
        crypto_provider: an AbstractWorker which is used to generate triples
        field: an interger denoting the size of the field
        """
    locations = list(shares.keys())
    shares_shape = shares[locations[0]].shape
    other_shape = other_shares[locations[0]].shape
    triple = crypto_provider.generate_triple(cmd, field, shares_shape, other_shape, locations)
    a, b, c = triple
    a, b, c = a.child, b.child, c.child
    d = {}
    e = {}
    for location in locations:
        d[location] = shares[location] - a[location]
        e[location] = other_shares[location] - b[location]
    delta = torch.zeros(shares_shape, dtype=torch.long)
    epsilon = torch.zeros(other_shape, dtype=torch.long)

    for location in locations:
        d_temp = d[location].get()
        e_temp = e[location].get()
        delta = delta + d_temp
        epsilon = epsilon + e_temp

    delta_epsilon = cmd(delta, epsilon)

    delta_ptrs = {}
    epsilon_ptrs = {}
    a_epsilon = {}
    delta_b = {}
    z = {}
    for location in locations:
        delta_ptrs[location] = delta.send(location)
        epsilon_ptrs[location] = epsilon.send(location)
        a_epsilon[location] = cmd(a[location], epsilon_ptrs[location])
        delta_b[location] = cmd(delta_ptrs[location], b[location])
        z[location] = a_epsilon[location] + delta_b[location] + c[location]
    delta_epsilon_pointer = delta_epsilon.send(locations[0])
    z[locations[0]] = z[locations[0]] + delta_epsilon_pointer
    return z
示例#2
0
文件: spdz.py 项目: iansee/FYP
def spdz_mul(cmd: Callable, x_sh, y_sh, crypto_provider: AbstractWorker,
             field: int):
    """Abstractly multiplies two tensors (mul or matmul)

    Args:
        cmd: a callable of the equation to be computed (mul or matmul)
        x_sh (AdditiveSharingTensor): the left part of the operation
        y_sh (AdditiveSharingTensor): the right part of the operation
        crypto_provider (AbstractWorker): an AbstractWorker which is used to generate triples
        field (int): an integer denoting the size of the field

    Return:
        an AdditiveSharingTensor
    """
    assert isinstance(x_sh, sy.AdditiveSharingTensor)
    assert isinstance(y_sh, sy.AdditiveSharingTensor)

    locations = x_sh.locations

    # Get triples
    a, b, a_mul_b = crypto_provider.generate_triple(cmd, field, x_sh.shape,
                                                    y_sh.shape, locations)

    delta = x_sh - a
    epsilon = y_sh - b
    # Reconstruct and send to all workers
    delta = delta.reconstruct()
    epsilon = epsilon.reconstruct()

    delta_epsilon = cmd(delta, epsilon)

    # Trick to keep only one child in the MultiPointerTensor (like in SNN)
    j1 = torch.ones(delta_epsilon.shape).long().send(locations[0], **no_wrap)
    j0 = torch.zeros(delta_epsilon.shape).long().send(*locations[1:],
                                                      **no_wrap)
    if len(locations) == 2:
        j = sy.MultiPointerTensor(children=[j1, j0])
    else:
        j = sy.MultiPointerTensor(children=[j1] + j0.child.values())

    delta_b = cmd(delta, b)
    a_epsilon = cmd(a, epsilon)

    return delta_epsilon * j + delta_b + a_epsilon + a_mul_b