async def _fit_model_on_worker(self, worker, curr_round):
        """Send the model to the worker and fit the model on the worker's training data.

        Args:
            worker (class:`syft.workers.WebsocketClientWorker`): Remote worker, where
                the model shall be trained.

        Returns:
            A tuple containing:
                * worker_id: Union[int, str], id of the worker.
                * improved model: torch.jit.ScriptModule, model after remote training.
                * loss: Loss on last training batch, torch.tensor.
        """
        train_config = sy.TrainConfig(
            model=self.model,
            loss_fn=self.loss_fn,
            batch_size=self.config.train_batch_size,
            shuffle=True,
            max_nr_batches=self.config.fed_after_n_batches,
            epochs=1,
            optimizer=self.config.optimizer,
            optimizer_args=self.config.optimizer_params,
        )
        train_config.send(worker)

        loss = await worker.async_fit(
            dataset_key=self.config.train_dataset_name, return_ids=[0])
        logger.info("Training round: %s, worker: %s, avg_loss: %.4f" %
                    (curr_round, worker.id, loss.mean().item()))

        model = train_config.model_ptr.get().obj
        return worker.id, model, loss
    def _evaluate_model_on_worker(self, model_identifier, worker, model):
        """
        Method to evaluate models on remote workers. It logs model performance.

        Args:
            model_identifier (str): The model which
            worker (class:`syft.workers.WebsocketClientWorker`): Remote worker, where
                the model shall be evaluated. Note that, all workers have the same test
                set so we always use the first.
            model (:class:`torch.nn.Module`): Neural network defined in Torch.
        """
        model.eval()

        # Create and send train config
        train_config = sy.TrainConfig(model=model,
                                      loss_fn=self.loss_fn,
                                      batch_size=self.config.test_batch_size,
                                      optimizer_args=None,
                                      epochs=1)
        train_config.send(worker)
        test_loss, eval_metrics, ys = worker.evaluate(
            dataset_key=self.config.test_dataset_name,
            metrics=self.config.metrics,
            regression=self.config.regression)
        logger.info("%s: Test set: Average loss: %.4f" %
                    (model_identifier, test_loss))
        print_metrics(eval_metrics, ys)
def test_send_model_and_loss_fn(workers):
    train_config = sy.TrainConfig(batch_size=2,
                                  id="send_model_and_loss_fn_tc",
                                  model=None,
                                  loss_fn=None)
    alice = workers["alice"]

    orig_func = sy.ID_PROVIDER.pop
    model_id = 44
    model_id_at_location = 44000
    loss_fn_id = 55
    loss_fn_id_at_location = 55000
    sy.ID_PROVIDER.pop = mock.Mock(side_effect=[
        model_id, model_id_at_location, loss_fn_id, loss_fn_id_at_location
    ])

    train_config.send(alice)

    assert alice.train_config.id == train_config.id
    assert alice.train_config._model_id == train_config._model_id
    assert alice.train_config._loss_fn_id == train_config._loss_fn_id
    assert alice.train_config.batch_size == train_config.batch_size
    assert alice.train_config.epochs == train_config.epochs
    assert alice.train_config.optimizer == train_config.optimizer
    assert alice.train_config.optimizer_args == train_config.optimizer_args
    assert alice.train_config.location == train_config.location
    assert alice.train_config._model_id == model_id
    assert alice.train_config._loss_fn_id == loss_fn_id

    sy.ID_PROVIDER.pop = orig_func
示例#4
0
def _detail_train_config(worker: AbstractWorker,
                         train_config_tuple: tuple) -> sy.TrainConfig:
    """This function reconstructs a TrainConfig object given it's attributes in the form of a tuple.

    Args:
        worker: the worker doing the deserialization
        train_config_tuple: a tuple holding the attributes of the TrainConfig
    Returns:
        train_config: A TrainConfig object
    """

    model_id, loss_fn_id, batch_size, epochs, optimizer, lr, id, max_nr_batches, shuffle = (
        train_config_tuple)

    id = _detail(worker, id)
    detailed_optimizer = _detail(worker, optimizer)

    train_config = syft.TrainConfig(
        model=None,
        loss_fn=None,
        owner=worker,
        id=id,
        model_id=model_id,
        loss_fn_id=loss_fn_id,
        batch_size=batch_size,
        epochs=epochs,
        optimizer=detailed_optimizer,
        lr=lr,
        max_nr_batches=max_nr_batches,
        shuffle=shuffle,
    )

    return train_config
示例#5
0
def test___str__():
    train_config = sy.TrainConfig(batch_size=2, id=99887766, model=None, loss_fn=None)

    train_config_str = str(train_config)
    str_expected = "<TrainConfig id:99887766 owner:me epochs: 1 batch_size: 2 lr: 0.1>"

    assert str_expected == train_config_str
示例#6
0
文件: controller2.py 项目: iansee/FYP
async def fit_model_on_worker(worker: WebsocketClientWorker,
                              traced_model: torch.jit.ScriptModule,
                              batch_size: int, curr_round: int, lr: float,
                              no_federated_epochs: int):
    train_config = syft.TrainConfig(
        model=traced_model,
        loss_fn=loss_fn,
        batch_size=batch_size,
        shuffle=True,
        epochs=no_federated_epochs,
        optimizer="SGD",
        optimizer_args={"lr": lr},
    )

    #send the training config
    train_config.send(worker)
    #Call async fit on worker - async fit calls the method calls self fit method
    print("Training round {}, calling fit on worker: {}".format(
        curr_round, worker.id))
    loss = await worker.async_fit(dataset_key="targeted", return_ids=[0])
    print("Training round: {}, worker: {}, avg_loss: {}".format(
        curr_round, worker.id, loss.item()))
    #Call back to the model
    model = train_config.get_model().obj

    return worker.id, model, loss
示例#7
0
async def fit_model_on_worker(
    args,
    worker: websocket_client.WebsocketClientWorker,
    traced_model: torch.jit.ScriptModule,
    curr_round: int,
    lr: float,


):
    train_config = sy.TrainConfig(model=traced_model,
                              loss_fn=get_serializable_loss(args.loss),
                              optimizer=args.optimizer,
                              batch_size=args.batch_size,
                              optimizer_args={"lr": lr},
                              epochs=args.federate_after_n_batches,
                              shuffle=True,
                              max_nr_batches=args.max_nr_batches
                              )
    
    train_config.send(worker)
    loss = await worker.async_fit(dataset_key=args.dataset, return_ids=[0])
    model = train_config.model_ptr.get().obj

    
    return worker.id, model,loss
示例#8
0
def test_train_config_with_jit_trace(hook, workers):  # pragma: no cover
    alice = workers["alice"]
    me = workers["me"]

    data = torch.tensor([[-1, 2.0], [0, 1.1], [-1, 2.1], [0, 1.2]],
                        requires_grad=True)
    target = torch.tensor([[1], [0], [1], [0]])

    dataset = sy.BaseDataset(data, target)
    alice.add_dataset(dataset, key="vectors")

    @hook.torch.jit.script
    def loss_fn(real, pred):
        return ((real.float() - pred.float())**2).mean()

    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.fc1 = nn.Linear(2, 3)
            self.fc2 = nn.Linear(3, 2)
            self.fc3 = nn.Linear(2, 1)

        def forward(self, x):
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            return x

    model_untraced = Net()

    model = torch.jit.trace(model_untraced, data)
    model_with_id = pointers.ObjectWrapper(model, sy.ID_PROVIDER.pop())

    loss_fn_with_id = pointers.ObjectWrapper(loss_fn, sy.ID_PROVIDER.pop())

    model_ptr = me.send(model_with_id, alice)
    loss_fn_ptr = me.send(loss_fn_with_id, alice)

    print("Evaluation before training")
    pred = model(data)
    loss_before = loss_fn(real=target, pred=pred)
    print("Loss: {}".format(loss_before))

    # Create and send train config
    train_config = sy.TrainConfig(model=model, loss_fn=loss_fn, batch_size=2)
    train_config.send(alice)

    for epoch in range(5):
        loss = alice.fit(dataset="vectors")
        print("-" * 50)
        print("Iteration %s: alice's loss: %s" % (epoch, loss))

    print("Evaluation after training:")
    new_model = model_ptr.get()
    pred = new_model.obj(data)
    loss_after = loss_fn(real=target, pred=pred)
    print("Loss: {}".format(loss_after))

    assert loss_after < loss_before
def test_train_config_with_jit_trace(hook, workers):  # pragma: no cover
    alice = workers["alice"]

    data = torch.tensor([[-1, 2.0], [0, 1.1], [-1, 2.1], [0, 1.2]],
                        requires_grad=True)
    target = torch.tensor([[1], [0], [1], [0]])

    dataset = sy.BaseDataset(data, target)
    alice.add_dataset(dataset, key="gaussian_mixture")

    @hook.torch.jit.script
    def loss_fn(pred, target):
        return ((target.float() - pred.float())**2).mean()

    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.fc1 = nn.Linear(2, 3)
            self.fc2 = nn.Linear(3, 2)
            self.fc3 = nn.Linear(2, 1)

        def forward(self, x):
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            return x

    model_untraced = Net()

    model = torch.jit.trace(model_untraced, data)

    if PRINT_IN_UNITTESTS:
        print("Evaluation before training")
    pred = model(data)
    loss_before = loss_fn(target=target, pred=pred)

    if PRINT_IN_UNITTESTS:
        print("Loss: {}".format(loss_before))

    # Create and send train config
    train_config = sy.TrainConfig(model=model, loss_fn=loss_fn, batch_size=2)
    train_config.send(alice)

    for epoch in range(5):
        loss = alice.fit(dataset_key="gaussian_mixture")
        if PRINT_IN_UNITTESTS:  # pragma: no cover:
            print("-" * 50)
            print("Iteration %s: alice's loss: %s" % (epoch, loss))

    new_model = train_config.model_ptr.get()
    pred = new_model.obj(data)
    loss_after = loss_fn(target=target, pred=pred)

    if PRINT_IN_UNITTESTS:  # pragma: no cover:
        print("Loss before training: {}".format(loss_before))
        print("Loss after training: {}".format(loss_after))

    assert loss_after < loss_before
示例#10
0
def test_train_config_with_jit_trace_send_twice_with_fit(
        hook, workers):  # pragma: no cover
    torch.manual_seed(0)
    alice = workers["alice"]
    model, loss_fn, data, target, loss_before, dataset_key = prepare_training(
        hook, alice)

    # Create and send train config
    train_config_0 = sy.TrainConfig(model=model, loss_fn=loss_fn, batch_size=2)
    train_config_0.send(alice)

    for epoch in range(5):
        loss = alice.fit(dataset_key=dataset_key)
        if PRINT_IN_UNITTESTS:  # pragma: no cover:
            print("-" * 50)
            print("TrainConfig 0, iteration %s: alice's loss: %s" %
                  (epoch, loss))

    new_model = train_config_0.model_ptr.get()
    pred = new_model.obj(data)
    loss_after_0 = loss_fn(pred=pred, target=target)

    assert loss_after_0 < loss_before

    train_config = sy.TrainConfig(model=model, loss_fn=loss_fn, batch_size=2)
    train_config.send(alice)

    for epoch in range(5):
        loss = alice.fit(dataset_key=dataset_key)

        if PRINT_IN_UNITTESTS:  # pragma: no cover:
            print("-" * 50)
            print("TrainConfig 1, iteration %s: alice's loss: %s" %
                  (epoch, loss))

    new_model = train_config.model_ptr.get()
    pred = new_model.obj(data)
    loss_after = loss_fn(pred=pred, target=target)
    if PRINT_IN_UNITTESTS:  # pragma: no cover:
        print(
            "Loss after training with TrainConfig 0: {}".format(loss_after_0))
        print(
            "Loss after training with TrainConfig 1:   {}".format(loss_after))

    assert loss_after < loss_before
示例#11
0
def test___str__():
    train_config = sy.TrainConfig(batch_size=2, id=99887766, model=None, loss_fn=None)

    train_config_str = str(train_config)
    str_expected = (
        "<TrainConfig id:99887766 owner:me epochs: 1 batch_size: 2 optimizer_args: {'lr': 0.1}>"
    )

    assert str_expected == train_config_str
示例#12
0
def test_fit():
    data = torch.tensor([[-1, 2.0], [0, 1.1], [-1, 2.1], [0, 1.2]], requires_grad=True)
    target = torch.tensor([[1], [0], [1], [0]])

    fed_client = federated.FederatedClient()
    dataset = sy.BaseDataset(data, target)
    fed_client.add_dataset(dataset, key="vectors")

    def loss_fn(real, pred):
        return ((real.float() - pred.float()) ** 2).mean()

    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.fc1 = torch.nn.Linear(2, 3)
            self.fc2 = torch.nn.Linear(3, 2)
            self.fc3 = torch.nn.Linear(2, 1)

        def forward(self, x):
            x = torch.nn.functional.relu(self.fc1(x))
            x = torch.nn.functional.relu(self.fc2(x))
            x = self.fc3(x)
            return x

    model_untraced = Net()
    model = torch.jit.trace(model_untraced, data)
    model_id = 0
    model_ow = pointers.ObjectWrapper(obj=model, id=model_id)
    loss_id = 1
    loss_ow = pointers.ObjectWrapper(obj=loss_fn, id=loss_id)

    print("Evaluation before training")
    pred = model(data)
    loss_before = loss_fn(real=target, pred=pred)
    print("Loss: {}".format(loss_before))

    # Create and send train config
    train_config = sy.TrainConfig(
        batch_size=1, model=None, loss_fn=None, model_id=model_id, loss_fn_id=loss_id
    )

    fed_client.set_obj(model_ow)
    fed_client.set_obj(loss_ow)
    fed_client.set_obj(train_config)

    for epoch in range(5):
        loss = fed_client.fit(dataset_key="vectors")
        print("-" * 50)
        print("Iteration %s: alice's loss: %s" % (epoch, loss))

    print("Evaluation after training:")
    new_model = fed_client.get_obj(model_id)
    pred = new_model.obj(data)
    loss_after = loss_fn(real=target, pred=pred)
    print("Loss: {}".format(loss_after))

    assert loss_after < loss_before
def evaluate_model_on_worker(
    model_identifier,
    worker,
    dataset_key,
    model,
    nr_bins,
    batch_size,
    device,
    print_target_hist=False,
):
    model.eval()

    # Create and send train config
    train_config = sy.TrainConfig(batch_size=batch_size,
                                  model=model,
                                  loss_fn=loss_fn,
                                  optimizer_args=None,
                                  epochs=1)

    train_config.send(worker)

    result = worker.evaluate(
        dataset_key=dataset_key,
        return_histograms=True,
        nr_bins=nr_bins,
        return_loss=True,
        return_raw_accuracy=True,
        device=device,
    )
    test_loss = result["loss"]
    correct = result["nr_correct_predictions"]
    len_dataset = result["nr_predictions"]
    hist_pred = result["histogram_predictions"]
    hist_target = result["histogram_target"]

    if print_target_hist:
        logger.info("Target histogram: %s", hist_target)
    percentage_0_3 = int(100 * sum(hist_pred[0:4]) / len_dataset)
    percentage_4_6 = int(100 * sum(hist_pred[4:7]) / len_dataset)
    percentage_7_9 = int(100 * sum(hist_pred[7:10]) / len_dataset)
    logger.info(
        "%s: Percentage numbers 0-3: %s%%, 4-6: %s%%, 7-9: %s%%",
        model_identifier,
        percentage_0_3,
        percentage_4_6,
        percentage_7_9,
    )

    logger.info(
        "%s: Average loss: %s, Accuracy: %s/%s (%s%%)",
        model_identifier,
        f"{test_loss:.4f}",
        correct,
        len_dataset,
        f"{100.0 * correct / len_dataset:.2f}",
    )
示例#14
0
def test_send(workers):
    alice = workers["alice"]

    train_config = sy.TrainConfig(batch_size=2, id="id", model=None, loss_fn=None)
    train_config.send(alice)

    assert alice.train_config.id == train_config.id
    assert alice.train_config._model_id == train_config._model_id
    assert alice.train_config._loss_fn_id == train_config._loss_fn_id
    assert alice.train_config.batch_size == train_config.batch_size
    assert alice.train_config.epochs == train_config.epochs
    assert alice.train_config.optimizer == train_config.optimizer
    assert alice.train_config.optimizer_args == train_config.optimizer_args
    assert alice.train_config.location == train_config.location
示例#15
0
def test_train_config_with_jit_trace_send_twice_with_fit(
        hook, workers):  # pragma: no cover
    alice = workers["alice"]
    model, loss_fn, data, target, loss_before = prepare_training(hook, alice)

    # Create and send train config
    train_config_0 = sy.TrainConfig(model=model, loss_fn=loss_fn, batch_size=2)
    train_config_0.send(alice)

    for epoch in range(5):
        loss = alice.fit(dataset_key="vectors")
        print("-" * 50)
        print("Iteration %s: alice's loss: %s" % (epoch, loss))

    print("Evaluation after training train_config_0:")
    new_model = train_config_0.model_ptr.get()
    pred = new_model.obj(data)
    loss_after = loss_fn(real=target, pred=pred)
    print("Loss: {}".format(loss_after))

    assert loss_after < loss_before

    train_config = sy.TrainConfig(model=model, loss_fn=loss_fn, batch_size=2)
    train_config.send(alice)

    for epoch in range(5):
        loss = alice.fit(dataset_key="vectors")
        print("-" * 50)
        print("Iteration %s: alice's loss: %s" % (epoch, loss))

    print("Evaluation after training:")
    new_model = train_config.model_ptr.get()
    pred = new_model.obj(data)
    loss_after = loss_fn(real=target, pred=pred)
    print("Loss: {}".format(loss_after))

    assert loss_after < loss_before
def evaluate_model_on_worker(model_identifier,
                             worker,
                             dataset_key: str,
                             model: Model,
                             nr_bins,
                             batch_size,
                             print_target_hist=False):
    """
    Evaluate model on testing set. The testing set is
    located on the remote server worker called `testing` -- the trusted
    third party aggregartor.
    
    Loss and accuracy over the test set are returned.
    """
    model.eval()

    # Create and send train config
    train_config = sy.TrainConfig(
        batch_size=batch_size,
        model=model,
        loss_fn=loss_fn,
        optimizer_args=None,
        epochs=1
    )  #evaluate full model on 'testing' remote server worker (trusted third party)

    train_config.send(worker)

    #evaluate aggregate model on validation set
    result = worker.evaluate(
        dataset_key=dataset_key,
        nr_bins=nr_bins,
        return_loss=True,
        return_raw_accuracy=True,
    )

    test_loss = result["loss"]
    correct = result["nr_correct_predictions"]
    len_dataset = result["nr_predictions"]

    logger.info(
        "%s: Test set: Average loss: %s, Accuracy: %s/%s (%s)",
        model_identifier,
        "{:.4f}".format(test_loss),
        correct,
        len_dataset,
        "{:.2f}".format(100.0 * correct / len_dataset),
    )
示例#17
0
def evaluate_model_on_worker(
    model_identifier, worker, dataset_key, model, nr_bins, batch_size, print_target_hist=False
):
    model.eval()

    # Create and send train config
    train_config = sy.TrainConfig(
        batch_size=batch_size, model=model, loss_fn=loss_fn, optimizer_args=None, epochs=1
    )

    train_config.send(worker)

    result = worker.evaluate(
        dataset_key=dataset_key,
        return_histograms=True,
        nr_bins=nr_bins,
        return_loss=True,
        return_raw_accuracy=True,
    )
    test_loss = result["loss"]
    correct = result["nr_correct_predictions"]
    len_dataset = result["nr_predictions"]
    hist_pred = result["histogram_predictions"]
    hist_target = result["histogram_target"]

    if print_target_hist:
        logger.info("Target histogram: %s", hist_target)
    logger.info("%s: Prediction hist.: %s", model_identifier, hist_pred)
    logger.info(
        "%s: Percentage numbers 0-3: %s", model_identifier, sum(hist_pred[0:4]) / len_dataset
    )
    logger.info(
        "%s: Percentage numbers 4-6: %s", model_identifier, sum(hist_pred[4:7]) / len_dataset
    )
    logger.info(
        "%s: Percentage numbers 7-9: %s", model_identifier, sum(hist_pred[7:10]) / len_dataset
    )

    logger.info(
        "%s: Test set: Average loss: %s, Accuracy: %s/%s (%s)",
        model_identifier,
        "{:.4f}".format(test_loss),
        correct,
        len_dataset,
        "{:.2f}".format(100.0 * correct / len_dataset),
    )
def evaluate_model_on_worker(worker, dataset_key, model, batch_size):
    """ Evaluate a model on worker"""

    # Create and send train config
    train_config = sy.TrainConfig(
        batch_size=batch_size, model=model, loss_fn=loss_fn, optimizer_args={}, epochs=1
    )
    train_config.send(worker)
    result = worker.evaluate(
        dataset_key=dataset_key,
        return_histograms=False,
        return_loss=True,
        return_raw_accuracy=False,
        return_confusion_matrix=True,
        example_inputs=torch.rand(1, 10),
    )
    return result['loss'], result['confusion_matrix']
示例#19
0
async def fit_model_on_worker(
    worker: workers.WebsocketClientWorker,
    traced_model: torch.jit.ScriptModule,
    batch_size: int,
    curr_round: int,
    max_nr_batches: int,
    lr: float,
):
    """Send the model to the worker and fit the model on the worker's training data.

    Args:
        worker: Remote location, where the model shall be trained.
        traced_model: Model which shall be trained.
        batch_size: Batch size of each training step.
        curr_round: Index of the current training round (for logging purposes).
        max_nr_batches: If > 0, training on worker will stop at min(max_nr_batches, nr_available_batches).
        lr: Learning rate of each training step.

    Returns:
        A tuple containing:
            * worker_id: Union[int, str], id of the worker.
            * improved model: torch.jit.ScriptModule, model after training at the worker.
            * loss: Loss on last training batch, torch.tensor.
    """
    train_config = sy.TrainConfig(
        model=traced_model,
        loss_fn=loss_fn,
        batch_size=batch_size,
        shuffle=True,
        max_nr_batches=max_nr_batches,
        epochs=1,
        lr=lr,
    )
    train_config.send(worker)
    logger.info(
        "Training round %s, calling fit on worker: %s, lr = %s",
        curr_round,
        worker.id,
        "{:.3f}".format(train_config.lr),
    )
    loss = await worker.async_fit(dataset_key="mnist", return_ids=[0])
    logger.info("Training round: %s, worker: %s, avg_loss: %s", curr_round,
                worker.id, loss.mean())
    model = train_config.model_ptr.get().obj
    return worker.id, model, loss
async def fit_model_on_worker(worker, traced_model, optimizer, batch_size, epochs, lr, dataset_key, shuffle):
    """ Fit model on a worker """

    print('Training on "%s" ...' % (worker.id,))
    # Create and send train config
    train_config = sy.TrainConfig(
        model=traced_model,
        loss_fn=loss_fn,
        batch_size=batch_size,
        shuffle=shuffle,
        epochs=epochs,
        optimizer=optimizer,
        optimizer_args={'lr': lr},
    )
    train_config.send(worker)
    await worker.async_fit(dataset_key=dataset_key, return_ids=[0])
    model = train_config.model_ptr.get().obj
    return worker.id, model
示例#21
0
async def fit_model_on_worker(worker: WebsocketClientWorker,
                              traced_model: torch.jit.ScriptModule,
                              batch_size: int, curr_round: int, lr: float,
                              no_federated_epochs: int):
    train_config = syft.TrainConfig(
        model=traced_model,
        loss_fn=loss_fn,
        batch_size=batch_size,
        shuffle=True,
        epochs=no_federated_epochs,
        optimizer="SGD",
        optimizer_args={"lr": lr},
    )

    #send monitoring command
    message = worker.create_message_execute_command(
        command_name="start_monitoring", command_owner="self")
    serialized_message = syft.serde.serialize(message)
    worker._recv_msg(serialized_message)
    #send the training config
    train_config.send(worker)
    #Call async fit on worker - async fit calls the method calls self fit method
    print("Training round {}, calling fit on worker: {}".format(
        curr_round, worker.id))
    loss = await worker.async_fit(dataset_key="targeted", return_ids=[0])
    print("Training round: {}, worker: {}, avg_loss: {}".format(
        curr_round, worker.id, loss.item()))
    #Call back to the model
    model = train_config.get_model().obj
    #Stop monitoring command
    message = worker.create_message_execute_command(
        command_name="stop_monitoring", command_owner="self")
    serialized_message = syft.serde.serialize(message)
    network_info = worker._recv_msg(serialized_message)

    #Deserialize the response recieved
    network_info = syft.serde.deserialize(network_info)
    return worker.id, model, loss, network_info
示例#22
0
async def fit_model_on_worker(
    worker: websocket_client.WebsocketClientWorker,
    traced_model: torch.jit.ScriptModule,
    batch_size: int,
    #curr_round: int,
    epoch: int,
    max_nr_batches: int,
    lr: float,
):
    train_config = sy.TrainConfig(
        model=traced_model,
        loss_fn=loss_fn,
        batch_size=batch_size,
        shuffle=True,
        #max_nr_batches=max_nr_batches,
        max_nr_batches=-1,
        epochs=1,
        optimizer="Adam",
        optimizer_args={"lr": lr},
    )
    train_config.send(worker)
    loss = await worker.async_fit(dataset_key="dga", return_ids=[0])
    model = train_config.model_ptr.get().obj
    return worker.id, model, loss
示例#23
0
def test_train_config_with_jit_trace_sync(
        hook, start_remote_worker):  # pragma: no cover
    data, target = utils.create_gaussian_mixture_toy_data(100)
    dataset = sy.BaseDataset(data, target)
    dataset_key = "gaussian_mixture"

    server, remote_proxy = start_remote_worker(id="sync_fit",
                                               hook=hook,
                                               port=9000,
                                               dataset=(dataset, dataset_key))

    @hook.torch.jit.script
    def loss_fn(pred, target):
        return ((target.view(pred.shape).float() - pred.float())**2).mean()

    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.fc1 = nn.Linear(2, 3)
            self.fc2 = nn.Linear(3, 2)
            self.fc3 = nn.Linear(2, 1)

        def forward(self, x):
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            return x

    model_untraced = Net()

    model = torch.jit.trace(model_untraced, data)

    pred = model(data)
    loss_before = loss_fn(pred=pred, target=target)

    # Create and send train config
    train_config = sy.TrainConfig(model=model,
                                  loss_fn=loss_fn,
                                  batch_size=2,
                                  epochs=1)
    train_config.send(remote_proxy)

    for epoch in range(5):
        loss = remote_proxy.fit(dataset_key=dataset_key)
        if PRINT_IN_UNITTESTS:  # pragma: no cover
            print("-" * 50)
            print("Iteration %s: alice's loss: %s" % (epoch, loss))

    new_model = train_config.model_ptr.get()

    # assert that the new model has updated (modified) parameters
    assert not ((model.fc1._parameters["weight"] -
                 new_model.obj.fc1._parameters["weight"]).abs() < 10e-3).all()
    assert not ((model.fc2._parameters["weight"] -
                 new_model.obj.fc2._parameters["weight"]).abs() < 10e-3).all()
    assert not ((model.fc3._parameters["weight"] -
                 new_model.obj.fc3._parameters["weight"]).abs() < 10e-3).all()
    assert not ((model.fc1._parameters["bias"] -
                 new_model.obj.fc1._parameters["bias"]).abs() < 10e-3).all()
    assert not ((model.fc2._parameters["bias"] -
                 new_model.obj.fc2._parameters["bias"]).abs() < 10e-3).all()
    assert not ((model.fc3._parameters["bias"] -
                 new_model.obj.fc3._parameters["bias"]).abs() < 10e-3).all()

    new_model.obj.eval()
    pred = new_model.obj(data)
    loss_after = loss_fn(pred=pred, target=target)

    if PRINT_IN_UNITTESTS:  # pragma: no cover
        print("Loss before training: {}".format(loss_before))
        print("Loss after training: {}".format(loss_after))

    remote_proxy.close()
    server.terminate()

    assert loss_after < loss_before
示例#24
0
async def test_train_config_with_jit_trace_async(
        hook, start_proc):  # pragma: no cover
    kwargs = {
        "id": "async_fit",
        "host": "localhost",
        "port": 8777,
        "hook": hook
    }
    # data = torch.tensor([[0.0, 1.0], [1.0, 0.0], [1.0, 1.0], [0.0, 0.0]], requires_grad=True)
    # target = torch.tensor([[1.0], [1.0], [0.0], [0.0]], requires_grad=False)
    # dataset_key = "xor"
    data, target = utils.create_gaussian_mixture_toy_data(100)
    dataset_key = "gaussian_mixture"

    mock_data = torch.zeros(1, 2)

    # TODO check reason for error (RuntimeError: This event loop is already running) when starting websocket server from pytest-asyncio environment
    # dataset = sy.BaseDataset(data, target)

    # server, remote_proxy = start_remote_worker(id="async_fit", port=8777, hook=hook, dataset=(dataset, dataset_key))

    # time.sleep(0.1)

    remote_proxy = WebsocketClientWorker(**kwargs)

    @hook.torch.jit.script
    def loss_fn(pred, target):
        return ((target.view(pred.shape).float() - pred.float())**2).mean()

    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.fc1 = nn.Linear(2, 3)
            self.fc2 = nn.Linear(3, 2)
            self.fc3 = nn.Linear(2, 1)

        def forward(self, x):
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            return x

    model_untraced = Net()

    model = torch.jit.trace(model_untraced, mock_data)

    pred = model(data)
    loss_before = loss_fn(target=target, pred=pred)

    # Create and send train config
    train_config = sy.TrainConfig(model=model,
                                  loss_fn=loss_fn,
                                  batch_size=2,
                                  optimizer="SGD",
                                  optimizer_args={"lr": 0.1})
    train_config.send(remote_proxy)

    for epoch in range(5):
        loss = await remote_proxy.async_fit(dataset_key=dataset_key)
        if PRINT_IN_UNITTESTS:  # pragma: no cover
            print("-" * 50)
            print("Iteration %s: alice's loss: %s" % (epoch, loss))

    new_model = train_config.model_ptr.get()

    assert not (model.fc1._parameters["weight"]
                == new_model.obj.fc1._parameters["weight"]).all()
    assert not (model.fc2._parameters["weight"]
                == new_model.obj.fc2._parameters["weight"]).all()
    assert not (model.fc3._parameters["weight"]
                == new_model.obj.fc3._parameters["weight"]).all()
    assert not (model.fc1._parameters["bias"]
                == new_model.obj.fc1._parameters["bias"]).all()
    assert not (model.fc2._parameters["bias"]
                == new_model.obj.fc2._parameters["bias"]).all()
    assert not (model.fc3._parameters["bias"]
                == new_model.obj.fc3._parameters["bias"]).all()

    new_model.obj.eval()
    pred = new_model.obj(data)
    loss_after = loss_fn(target=target, pred=pred)
    if PRINT_IN_UNITTESTS:  # pragma: no cover
        print("Loss before training: {}".format(loss_before))
        print("Loss after training: {}".format(loss_after))

    remote_proxy.close()
    # server.terminate()

    assert loss_after < loss_before
示例#25
0
文件: Simple-h2.py 项目: iansee/FYP
mock_data = torch.zeros(1)
traced_model  = torch.jit.trace(model,mock_data)


optimizer = "SGD"

batch_size = 4
optimizer_args = {"lr" : 0.1, "weight_decay" : 0.01}
max_nr_batches = -1  # not used in this example
shuffle = True


train_config = syft.TrainConfig(model=traced_model,
                              loss_fn=loss_fn,
                              optimizer=optimizer,
                              batch_size=batch_size,
                              optimizer_args=optimizer_args,
                              epochs=5,
                              shuffle=shuffle)

arw = {"host":"10.0.0.1","hook":hook}
h1 = WebsocketClientWorker(id="h1",port=8778,**arw)
train_config.send(h1)


message = h1.create_message_execute_command(command_name="start_monitoring",command_owner="self")
serialized_message = syft.serde.serialize(message)
h1._recv_msg(serialized_message)


time.sleep(3)
示例#26
0
def test_evaluate(hook, start_proc):  # pragma: no cover

    sy.local_worker.clear_objects()
    sy.frameworks.torch.hook.hook_args.hook_method_args_functions = {}
    sy.frameworks.torch.hook.hook_args.hook_method_response_functions = {}
    sy.frameworks.torch.hook.hook_args.get_tensor_type_functions = {}
    sy.frameworks.torch.hook.hook_args.register_response_functions = {}

    data, target = utils.iris_data_partial()

    dataset = sy.BaseDataset(data=data, targets=target)

    kwargs = {
        "id": "evaluate_remote",
        "host": "localhost",
        "port": 8780,
        "hook": hook
    }
    dataset_key = "iris"
    # TODO: check why unit test sometimes fails when WebsocketServerWorker is started from the unit test. Fails when run after test_federated_client.py
    # process_remote_worker = start_proc(WebsocketServerWorker, dataset=(dataset, dataset_key), verbose=True, **kwargs)

    local_worker = instantiate_websocket_client_worker(**kwargs)

    def loss_fn(pred, target):
        return torch.nn.functional.cross_entropy(input=pred, target=target)

    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.fc1 = torch.nn.Linear(4, 3)

            torch.nn.init.xavier_normal_(self.fc1.weight)

        def forward(self, x):
            x = torch.nn.functional.relu(self.fc1(x))
            return x

    model_untraced = Net()
    model = torch.jit.trace(model_untraced, data)
    loss_traced = torch.jit.trace(
        loss_fn, (torch.tensor([[0.3, 0.5, 0.2]]), torch.tensor([1])))

    pred = model(data)
    loss_before = loss_fn(target=target, pred=pred)
    if PRINT_IN_UNITTESTS:  # pragma: no cover
        print("Loss: {}".format(loss_before))

    # Create and send train config
    train_config = sy.TrainConfig(
        batch_size=4,
        model=model,
        loss_fn=loss_traced,
        model_id=None,
        loss_fn_id=None,
        optimizer_args=None,
        epochs=1,
    )
    train_config.send(local_worker)

    result = local_worker.evaluate(dataset_key=dataset_key,
                                   calculate_histograms=True,
                                   nr_bins=3,
                                   calculate_loss=True)

    test_loss_before, correct_before, len_dataset, hist_pred_before, hist_target = result

    if PRINT_IN_UNITTESTS:  # pragma: no cover
        print("Evaluation result before training: {}".format(result))

    assert len_dataset == 30
    assert (hist_target == [10, 10, 10]).all()

    local_worker.close()
    local_worker.remove_worker_from_local_worker_registry()
示例#27
0
def test_evaluate():  # pragma: no cover
    data, target = utils.iris_data_partial()

    fed_client = FederatedClient()
    dataset = sy.BaseDataset(data, target)
    dataset_key = "iris"
    fed_client.add_dataset(dataset, key=dataset_key)

    def loss_fn(pred, target):
        return torch.nn.functional.cross_entropy(input=pred, target=target)

    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.fc1 = torch.nn.Linear(4, 3)

        def forward(self, x):
            x = torch.nn.functional.relu(self.fc1(x))
            return x

    model_untraced = Net()

    with torch.no_grad():
        model_untraced.fc1.weight.set_(
            torch.tensor(
                [
                    [0.0160, 1.3753, -0.1202, -0.9129],
                    [0.1539, 0.3092, 0.0749, 0.2142],
                    [0.0984, 0.6248, 0.0274, 0.1735],
                ]
            )
        )
        model_untraced.fc1.bias.set_(torch.tensor([0.3477, 0.2970, -0.0799]))

    model = torch.jit.trace(model_untraced, data)
    model_id = 0
    model_ow = ObjectWrapper(obj=model, id=model_id)
    loss_id = 1
    loss_ow = ObjectWrapper(obj=loss_fn, id=loss_id)
    pred = model(data)
    loss_before = loss_fn(target=target, pred=pred)
    if PRINT_IN_UNITTESTS:  # pragma: no cover
        print("Loss before training: {}".format(loss_before))

    # Create and send train config
    train_config = sy.TrainConfig(
        batch_size=8,
        model=None,
        loss_fn=None,
        model_id=model_id,
        loss_fn_id=loss_id,
        optimizer_args=None,
        epochs=1,
    )

    fed_client.set_obj(model_ow)
    fed_client.set_obj(loss_ow)
    fed_client.set_obj(train_config)
    fed_client.optimizer = None

    result = fed_client.evaluate(
        dataset_key=dataset_key, return_histograms=True, nr_bins=3, return_loss=True
    )

    test_loss_before = result["loss"]
    correct_before = result["nr_correct_predictions"]
    len_dataset = result["nr_predictions"]
    hist_pred_before = result["histogram_predictions"]
    hist_target = result["histogram_target"]

    if PRINT_IN_UNITTESTS:  # pragma: no cover
        print("Evaluation result before training: {}".format(result))

    assert len_dataset == 30
    assert (hist_target == [10, 10, 10]).all()

    train_config = sy.TrainConfig(
        batch_size=8,
        model=None,
        loss_fn=None,
        model_id=model_id,
        loss_fn_id=loss_id,
        optimizer="SGD",
        optimizer_args={"lr": 0.01},
        shuffle=True,
        epochs=2,
    )
    fed_client.set_obj(train_config)
    train_model(
        fed_client, dataset_key, available_dataset_key=dataset_key, nr_rounds=50, device="cpu"
    )

    result = fed_client.evaluate(
        dataset_key=dataset_key, return_histograms=True, nr_bins=3, return_loss=True
    )

    test_loss_after = result["loss"]
    correct_after = result["nr_correct_predictions"]
    len_dataset = result["nr_predictions"]
    hist_pred_after = result["histogram_predictions"]
    hist_target = result["histogram_target"]

    if PRINT_IN_UNITTESTS:  # pragma: no cover
        print("Evaluation result: {}".format(result))

    assert len_dataset == 30
    assert (hist_target == [10, 10, 10]).all()
    assert correct_after > correct_before
    assert torch.norm(torch.tensor(hist_target - hist_pred_after)) < torch.norm(
        torch.tensor(hist_target - hist_pred_before)
    )
示例#28
0
def test_fit(fit_dataset_key, epochs, device):

    if device == "cuda" and not torch.cuda.is_available():
        return

    data, target = utils.create_gaussian_mixture_toy_data(nr_samples=100)

    fed_client = FederatedClient()
    dataset = sy.BaseDataset(data, target)
    dataset_key = "gaussian_mixture"
    fed_client.add_dataset(dataset, key=dataset_key)

    def loss_fn(pred, target):
        return torch.nn.functional.cross_entropy(input=pred, target=target)

    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.fc1 = torch.nn.Linear(2, 3)
            self.fc2 = torch.nn.Linear(3, 2)

            torch.nn.init.xavier_normal_(self.fc1.weight)
            torch.nn.init.xavier_normal_(self.fc2.weight)

        def forward(self, x):
            x = torch.nn.functional.relu(self.fc1(x))
            x = torch.nn.functional.relu(self.fc2(x))
            return x

    data_device = data.to(torch.device(device))
    target_device = target.to(torch.device(device))
    model_untraced = Net().to(torch.device(device))
    model = torch.jit.trace(model_untraced, data_device)
    model_id = 0
    model_ow = ObjectWrapper(obj=model, id=model_id)
    loss_id = 1
    loss_ow = ObjectWrapper(obj=loss_fn, id=loss_id)
    pred = model(data_device)
    loss_before = loss_fn(target=target_device, pred=pred)
    if PRINT_IN_UNITTESTS:  # pragma: no cover
        print("Loss before training: {}".format(loss_before))

    # Create and send train config
    train_config = sy.TrainConfig(
        batch_size=8,
        model=None,
        loss_fn=None,
        model_id=model_id,
        loss_fn_id=loss_id,
        optimizer_args={"lr": 0.05, "weight_decay": 0.01},
        epochs=epochs,
    )

    fed_client.set_obj(model_ow)
    fed_client.set_obj(loss_ow)
    fed_client.set_obj(train_config)
    fed_client.optimizer = None

    train_model(
        fed_client, fit_dataset_key, available_dataset_key=dataset_key, nr_rounds=3, device=device
    )

    if dataset_key == fit_dataset_key:
        loss_after = evaluate_model(fed_client, model_id, loss_fn, data_device, target_device)
        if PRINT_IN_UNITTESTS:  # pragma: no cover
            print("Loss after training: {}".format(loss_after))

        if loss_after >= loss_before:  # pragma: no cover
            if PRINT_IN_UNITTESTS:
                print("Loss not reduced, train more: {}".format(loss_after))

            train_model(
                fed_client, fit_dataset_key, available_dataset_key=dataset_key, nr_rounds=10
            )
            loss_after = evaluate_model(fed_client, model_id, loss_fn, data, target)

        assert loss_after < loss_before
示例#29
0
    worker.clear_objects_remote()
    traced_model = trace(Classifier(), torch.rand(1, 10))

    train_losses = []
    test_losses = []
    confusion_matrices = []

    for epoch in range(config_epochs):

        traced_model.train()

        train_config = sy.TrainConfig(
            model=traced_model,
            loss_fn=loss_fn,
            batch_size=config_batch,
            shuffle=config_shuffle,
            max_nr_batches=-1,
            epochs=1,
            optimizer=config_optimizer,
            optimizer_args={'lr': config_lr},
        )

        worker.clear_objects_remote()
        train_config.send(worker)
        loss = worker.fit(dataset_key='train')
        traced_model = train_config.model_ptr.get().obj

        # Evaluation
        traced_model.eval()

        # Evaluate on train set
        train_config = sy.TrainConfig(
示例#30
0
def test_fit():
    data, target = utils.create_gaussian_mixture_toy_data(nr_samples=100)

    fed_client = federated.FederatedClient()
    dataset = sy.BaseDataset(data, target)
    dataset_key = "gaussian_mixture"
    fed_client.add_dataset(dataset, key=dataset_key)

    def loss_fn(target, pred):
        return torch.nn.functional.cross_entropy(input=pred, target=target)

    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.fc1 = torch.nn.Linear(2, 3)
            self.fc2 = torch.nn.Linear(3, 2)

            torch.nn.init.xavier_normal_(self.fc1.weight)
            torch.nn.init.xavier_normal_(self.fc2.weight)

        def forward(self, x):
            x = torch.nn.functional.relu(self.fc1(x))
            x = torch.nn.functional.relu(self.fc2(x))
            return x

    model_untraced = Net()
    model = torch.jit.trace(model_untraced, data)
    model_id = 0
    model_ow = pointers.ObjectWrapper(obj=model, id=model_id)
    loss_id = 1
    loss_ow = pointers.ObjectWrapper(obj=loss_fn, id=loss_id)
    pred = model(data)
    loss_before = loss_fn(target=target, pred=pred)
    if PRINT_IN_UNITTESTS:  # pragma: no cover
        print("Loss before training: {}".format(loss_before))

    # Create and send train config
    train_config = sy.TrainConfig(
        batch_size=8,
        model=None,
        loss_fn=None,
        model_id=model_id,
        loss_fn_id=loss_id,
        lr=0.05,
        weight_decay=0.01,
    )

    fed_client.set_obj(model_ow)
    fed_client.set_obj(loss_ow)
    fed_client.set_obj(train_config)
    fed_client.optimizer = None

    for curr_round in range(12):
        loss = fed_client.fit(dataset_key=dataset_key)
        if PRINT_IN_UNITTESTS and curr_round % 4 == 0:  # pragma: no cover
            print("-" * 50)
            print("Iteration %s: alice's loss: %s" % (curr_round, loss))

    new_model = fed_client.get_obj(model_id)
    pred = new_model.obj(data)
    loss_after = loss_fn(target=target, pred=pred)
    if PRINT_IN_UNITTESTS:  # pragma: no cover:
        print("Loss after training: {}".format(loss_after))

    assert loss_after < loss_before