示例#1
0
    def test_search_obj(self):

        hook = sy.TorchHook()

        hook.local_worker.is_client_worker = False

        x = sy.Var(sy.FloatTensor(
            [-2, -1, 0, 1, 2, 3])).set_id('#boston_housing #target #dataset')
        y = sy.Var(sy.FloatTensor(
            [-2, -1, 0, 1, 2, 3])).set_id('#boston_housing #input #dataset')

        hook.local_worker.is_client_worker = True

        assert len(hook.local_worker.search("#boston_housing")) == 2
        assert len(hook.local_worker.search(["#boston_housing",
                                             "#target"])) == 1
示例#2
0
    def test_set_id(self):

        init_state = hook.local_worker.is_client_worker
        hook.local_worker.is_client_worker = False

        x = torch.FloatTensor([-2, -1, 0, 1, 2, 3]).set_id('bobs tensor')
        assert x.id == 'bobs tensor'
        assert x.child.id == 'bobs tensor'

        assert x.id in hook.local_worker._objects
        assert list(x.child.old_ids)[0] in hook.local_worker._objects
        assert list(x.child.old_ids)[0] != x.id

        x = sy.Var(sy.FloatTensor([-2, -1, 0, 1, 2, 3])).set_id('bobs variable')
        assert x.id == 'bobs variable'
        assert x.child.id == 'bobs variable'

        assert x.id in hook.local_worker._objects
        assert list(x.child.old_ids)[0] in hook.local_worker._objects
        assert list(x.child.old_ids)[0] != x.id
示例#3
0
                               ]))

# create a couple workers

bob = sy.VirtualWorker(id="bob")
alice = sy.VirtualWorker(id="alice")
secure_worker = sy.VirtualWorker(id="secure_worker")

#bob.add_workers([alice, secure_worker])
#alice.add_workers([bob, secure_worker])
#secure_worker.add_workers([alice, bob])

train_distributed_dataset = []
for batch_idx, (data, target) in enumerate(train_loader):
    if batch_idx > 4: break
    data = sy.Var(data)
    target = sy.Var(target.long())
    data.send(bob)
    target.send(bob)
    train_distributed_dataset.append((data, target))

#bobs_model = model.copy().send(bob)
#alices_model = model.copy().send(alice)

bobs_model = Net()

bobs_opt = optim.SGD(params=bobs_model.parameters(), lr=0.1)
#alices_opt = optim.SGD(params=alices_model.parameters(),lr=0.1)

bobs_model = bobs_model.send(bob)