def flesch_index(text): sentences = sent_tokenize(text) total_sentences = len(sentences) total_words = np.sum([word_count(s) for s in sentences]) total_syllables = np.sum([ np.sum([ syllable_count(w) for w in word_tokenize(s) ]) \ for s in sentences ]) return 0.39*(total_words/total_sentences) + \ 11.8*(total_syllables/total_words) - 15.59
def find_wiki_page(syllable_constraint=5): while True: tmp = wikipedia.random() if syllable_count.syllable_count(tmp) == syllable_constraint\ and not forbidden_phrases_in_result(tmp): return tmp
def hard_word_count(sent): return len([ w for w in word_tokenize(sent) \ if syllable_count(wnl.lemmatize(w, pos='v'))>=3 ])