def cyclic_form(self): """Return the indices of the corners in cyclic notation. The indices are given relative to the original position of corners. See Also ======== corners, array_form """ return Perm._af_new(self.array_form).cyclic_form
def _naive_list_centralizer(self, other, af=False): from sympy.combinatorics.perm_groups import PermutationGroup """ Return a list of elements for the centralizer of a subgroup/set/element. Explanation =========== This is a brute force implementation that goes over all elements of the group and checks for membership in the centralizer. It is used to test ``.centralizer()`` from ``sympy.combinatorics.perm_groups``. Examples ======== >>> from sympy.combinatorics.testutil import _naive_list_centralizer >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(4) >>> _naive_list_centralizer(D, D) [Permutation([0, 1, 2, 3]), Permutation([2, 3, 0, 1])] See Also ======== sympy.combinatorics.perm_groups.centralizer """ from sympy.combinatorics.permutations import _af_commutes_with if hasattr(other, 'generators'): elements = list(self.generate_dimino(af=True)) gens = [x._array_form for x in other.generators] commutes_with_gens = lambda x: all( _af_commutes_with(x, gen) for gen in gens) centralizer_list = [] if not af: for element in elements: if commutes_with_gens(element): centralizer_list.append(Permutation._af_new(element)) else: for element in elements: if commutes_with_gens(element): centralizer_list.append(element) return centralizer_list elif hasattr(other, 'getitem'): return _naive_list_centralizer(self, PermutationGroup(other), af) elif hasattr(other, 'array_form'): return _naive_list_centralizer(self, PermutationGroup([other]), af)
def _naive_list_centralizer(self, other, af=False): from sympy.combinatorics.perm_groups import PermutationGroup """ Return a list of elements for the centralizer of a subgroup/set/element. This is a brute force implementation that goes over all elements of the group and checks for membership in the centralizer. It is used to test ``.centralizer()`` from ``sympy.combinatorics.perm_groups``. Examples ======== >>> from sympy.combinatorics.testutil import _naive_list_centralizer >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(4) >>> _naive_list_centralizer(D, D) [Permutation([0, 1, 2, 3]), Permutation([2, 3, 0, 1])] See Also ======== sympy.combinatorics.perm_groups.centralizer """ from sympy.combinatorics.permutations import _af_commutes_with if hasattr(other, "generators"): elements = list(self.generate_dimino(af=True)) gens = [x._array_form for x in other.generators] commutes_with_gens = lambda x: all(_af_commutes_with(x, gen) for gen in gens) centralizer_list = [] if not af: for element in elements: if commutes_with_gens(element): centralizer_list.append(Permutation._af_new(element)) else: for element in elements: if commutes_with_gens(element): centralizer_list.append(element) return centralizer_list elif hasattr(other, "getitem"): return _naive_list_centralizer(self, PermutationGroup(other), af) elif hasattr(other, "array_form"): return _naive_list_centralizer(self, PermutationGroup([other]), af)