def _a(n, j, prec): """Compute the inner sum in the HRR formula.""" if j == 1: return fone s = fzero pi = pi_fixed(prec) for h in range(1, j): if igcd(h, j) != 1: continue # & with mask to compute fractional part of fixed-point number one = 1 << prec onemask = one - 1 half = one >> 1 g = 0 if j >= 3: for k in range(1, j): t = h*k*one//j if t > 0: frac = t & onemask else: frac = -((-t) & onemask) g += k*(frac - half) g = ((g - 2*h*n*one)*pi//j) >> prec s = mpf_add(s, mpf_cos(from_man_exp(g, -prec), prec), prec) return s
def roots_cyclotomic(f, factor=False): """Compute roots of cyclotomic polynomials. """ L, U = _inv_totient_estimate(f.degree()) for n in range(L, U + 1): g = cyclotomic_poly(n, f.gen, polys=True) if f == g: break else: # pragma: no cover raise RuntimeError("failed to find index of a cyclotomic polynomial") roots = [] if not factor: # get the indices in the right order so the computed # roots will be sorted h = n//2 ks = [i for i in range(1, n + 1) if igcd(i, n) == 1] ks.sort(key=lambda x: (x, -1) if x <= h else (abs(x - n), 1)) d = 2*I*pi/n for k in reversed(ks): roots.append(exp(k*d).expand(complex=True)) else: g = Poly(f, extension=root(-1, n)) for h, _ in ordered(g.factor_list()[1]): roots.append(-h.TC()) return roots
def positive_roots(self): """ This method generates all the positive roots of A_n. This is half of all of the roots of A_n; by multiplying all the positive roots by -1 we get the negative roots. Examples ======== >>> from sympy.liealgebras.cartan_type import CartanType >>> c = CartanType("A3") >>> c.positive_roots() {1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]} """ n = self.n posroots = {} k = 0 for i in range(0, n): for j in range(i+1, n+1): k += 1 posroots[k] = self.basic_root(i, j) return posroots
def find_simple_recurrence_vector(l): """ This function is used internally by other functions from the sympy.concrete.guess module. While most users may want to rather use the function find_simple_recurrence when looking for recurrence relations among rational numbers, the current function may still be useful when some post-processing has to be done. The function returns a vector of length n when a recurrence relation of order n is detected in the sequence of rational numbers v. If the returned vector has a length 1, then the returned value is always the list [0], which means that no relation has been found. While the functions is intended to be used with rational numbers, it should work for other kinds of real numbers except for some cases involving quadratic numbers; for that reason it should be used with some caution when the argument is not a list of rational numbers. Examples ======== >>> from sympy.concrete.guess import find_simple_recurrence_vector >>> from sympy import fibonacci >>> find_simple_recurrence_vector([fibonacci(k) for k in range(12)]) [1, -1, -1] See also ======== See the function sympy.concrete.guess.find_simple_recurrence which is more user-friendly. """ q1 = [0] q2 = [Integer(1)] b, z = 0, len(l) >> 1 while len(q2) <= z: while l[b]==0: b += 1 if b == len(l): c = 1 for x in q2: c = lcm(c, denom(x)) if q2[0]*c < 0: c = -c for k in range(len(q2)): q2[k] = int(q2[k]*c) return q2 a = Integer(1)/l[b] m = [a] for k in range(b+1, len(l)): m.append(-sum(l[j+1]*m[b-j-1] for j in range(b, k))*a) l, m = m, [0] * max(len(q2), b+len(q1)) for k in range(len(q2)): m[k] = a*q2[k] for k in range(b, b+len(q1)): m[k] += q1[k-b] while m[-1]==0: m.pop() # because trailing zeros can occur q1, q2, b = q2, m, 1 return [0]
def RGS_generalized(m): """ Computes the m + 1 generalized unrestricted growth strings and returns them as rows in matrix. Examples ======== >>> from sympy.combinatorics.partitions import RGS_generalized >>> RGS_generalized(6) Matrix([ [ 1, 1, 1, 1, 1, 1, 1], [ 1, 2, 3, 4, 5, 6, 0], [ 2, 5, 10, 17, 26, 0, 0], [ 5, 15, 37, 77, 0, 0, 0], [ 15, 52, 151, 0, 0, 0, 0], [ 52, 203, 0, 0, 0, 0, 0], [203, 0, 0, 0, 0, 0, 0]]) """ d = zeros(m + 1) for i in range(0, m + 1): d[0, i] = 1 for i in range(1, m + 1): for j in range(m): if j <= m - i: d[i, j] = j * d[i - 1, j] + d[i - 1, j + 1] else: d[i, j] = 0 return d
def as_explicit(self): """ Returns a dense Matrix with elements represented explicitly Returns an object of type ImmutableDenseMatrix. Examples ======== >>> from sympy import Identity >>> I = Identity(3) >>> I I >>> I.as_explicit() Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) See Also ======== as_mutable: returns mutable Matrix type """ from sympy.matrices.immutable import ImmutableDenseMatrix return ImmutableDenseMatrix([[ self[i, j] for j in range(self.cols)] for i in range(self.rows)])
def __array__(self): from numpy import empty a = empty(self.shape, dtype=object) for i in range(self.rows): for j in range(self.cols): a[i, j] = self[i, j] return a
def copyin_matrix(self, key, value): # include this here because it's not part of BaseMatrix rlo, rhi, clo, chi = self.key2bounds(key) shape = value.shape dr, dc = rhi - rlo, chi - clo if shape != (dr, dc): raise ShapeError( "The Matrix `value` doesn't have the same dimensions " "as the in sub-Matrix given by `key`.") if not isinstance(value, SparseMatrix): for i in range(value.rows): for j in range(value.cols): self[i + rlo, j + clo] = value[i, j] else: if (rhi - rlo)*(chi - clo) < len(self): for i in range(rlo, rhi): for j in range(clo, chi): self._smat.pop((i, j), None) else: for i, j, v in self.row_list(): if rlo <= i < rhi and clo <= j < chi: self._smat.pop((i, j), None) for k, v in value._smat.items(): i, j = k self[i + rlo, j + clo] = value[i, j]
def fill(self, value): """Fill self with the given value. Notes ===== Unless many values are going to be deleted (i.e. set to zero) this will create a matrix that is slower than a dense matrix in operations. Examples ======== >>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.zeros(3); M Matrix([ [0, 0, 0], [0, 0, 0], [0, 0, 0]]) >>> M.fill(1); M Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1]]) """ if not value: self._smat = {} else: v = self._sympify(value) self._smat = {(i, j): v for i in range(self.rows) for j in range(self.cols)}
def _dup_right_decompose(f, s, K): """Helper function for :func:`_dup_decompose`.""" n = len(f) - 1 lc = dup_LC(f, K) f = dup_to_raw_dict(f) g = { s: K.one } r = n // s for i in range(1, s): coeff = K.zero for j in range(0, i): if not n + j - i in f: continue if not s - j in g: continue fc, gc = f[n + j - i], g[s - j] coeff += (i - r*j)*fc*gc g[s - i] = K.quo(coeff, i*r*lc) return dup_from_raw_dict(g, K)
def test_basic_degree_0(): d = 0 knots = range(5) splines = bspline_basis_set(d, knots, x) for i in range(len(splines)): assert splines[i] == Piecewise((1, Interval(i, i + 1).contains(x)), (0, True))
def tolist(self): """Return the Matrix as a nested Python list. Examples ======== >>> from sympy import Matrix, ones >>> m = Matrix(3, 3, range(9)) >>> m Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> m.tolist() [[0, 1, 2], [3, 4, 5], [6, 7, 8]] >>> ones(3, 0).tolist() [[], [], []] When there are no rows then it will not be possible to tell how many columns were in the original matrix: >>> ones(0, 3).tolist() [] """ if not self.rows: return [] if not self.cols: return [[] for i in range(self.rows)] return [self._mat[i: i + self.cols] for i in range(0, len(self), self.cols)]
def _extend_y0(Holonomic, n): """ Tries to find more initial conditions by substituting the initial value point in the differential equation. """ annihilator = Holonomic.annihilator a = annihilator.order x = Holonomic.x listofpoly = [] y0 = Holonomic.y0 R = annihilator.parent.base K = R.get_field() for i, j in enumerate(annihilator.listofpoly): if isinstance(j, annihilator.parent.base.dtype): listofpoly.append(K.new(j.rep)) if len(y0) < a or n <= len(y0): return y0 else: list_red = [-listofpoly[i] / listofpoly[a] for i in range(a)] y1 = [i for i in y0] for i in range(n - a): sol = 0 for a, b in zip(y1, list_red): r = DMFsubs(b, Holonomic.x0) if not r.is_finite: return y0 sol += a * r y1.append(sol) list_red = _derivate_diff_eq(list_red) return y0 + y1[len(y0):]
def dup_from_dict(f, K): """ Create a ``K[x]`` polynomial from a ``dict``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.densebasic import dup_from_dict >>> dup_from_dict({(0,): ZZ(7), (2,): ZZ(5), (4,): ZZ(1)}, ZZ) [1, 0, 5, 0, 7] >>> dup_from_dict({}, ZZ) [] """ if not f: return [] n, h = max(f.keys()), [] if type(n) is int: for k in range(n, -1, -1): h.append(f.get(k, K.zero)) else: (n,) = n for k in range(n, -1, -1): h.append(f.get((k,), K.zero)) return dup_strip(h)
def random_circuit(ngates, nqubits, gate_space=(X, Y, Z, S, T, H, CNOT, SWAP)): """Return a random circuit of ngates and nqubits. This uses an equally weighted sample of (X, Y, Z, S, T, H, CNOT, SWAP) gates. Parameters ---------- ngates : int The number of gates in the circuit. nqubits : int The number of qubits in the circuit. gate_space : tuple A tuple of the gate classes that will be used in the circuit. Repeating gate classes multiple times in this tuple will increase the frequency they appear in the random circuit. """ qubit_space = range(nqubits) result = [] for i in range(ngates): g = random.choice(gate_space) if g == CNotGate or g == SwapGate: qubits = random.sample(qubit_space, 2) g = g(*qubits) else: qubit = random.choice(qubit_space) g = g(qubit) result.append(g) return Mul(*result)
def _identity_matrix(n, domain): M = [[domain.zero]*n for _ in range(n)] for i in range(n): M[i][i] = domain.one return M
def _eval_expand_func(self, **hints): from sympy import exp, I, floor, Add, Poly, Dummy, exp_polar, unpolarify z, s, a = self.args if z == 1: return zeta(s, a) if s.is_Integer and s <= 0: t = Dummy('t') p = Poly((t + a)**(-s), t) start = 1/(1 - t) res = S(0) for c in reversed(p.all_coeffs()): res += c*start start = t*start.diff(t) return res.subs(t, z) if a.is_Rational: # See section 18 of # Kelly B. Roach. Hypergeometric Function Representations. # In: Proceedings of the 1997 International Symposium on Symbolic and # Algebraic Computation, pages 205-211, New York, 1997. ACM. # TODO should something be polarified here? add = S(0) mul = S(1) # First reduce a to the interaval (0, 1] if a > 1: n = floor(a) if n == a: n -= 1 a -= n mul = z**(-n) add = Add(*[-z**(k - n)/(a + k)**s for k in range(n)]) elif a <= 0: n = floor(-a) + 1 a += n mul = z**n add = Add(*[z**(n - 1 - k)/(a - k - 1)**s for k in range(n)]) m, n = S([a.p, a.q]) zet = exp_polar(2*pi*I/n) root = z**(1/n) return add + mul*n**(s - 1)*Add( *[polylog(s, zet**k*root)._eval_expand_func(**hints) / (unpolarify(zet)**k*root)**m for k in range(n)]) # TODO use minpoly instead of ad-hoc methods when issue 5888 is fixed if z.func is exp and (z.args[0]/(pi*I)).is_Rational or z in [-1, I, -I]: # TODO reference? if z == -1: p, q = S([1, 2]) elif z == I: p, q = S([1, 4]) elif z == -I: p, q = S([-1, 4]) else: arg = z.args[0]/(2*pi*I) p, q = S([arg.p, arg.q]) return Add(*[exp(2*pi*I*k*p/q)/q**s*zeta(s, (k + a)/q) for k in range(q)]) return lerchphi(z, s, a)
def blocks(self): from sympy.matrices.immutable import ImmutableDenseMatrix mats = self.args data = [[mats[i] if i == j else ZeroMatrix(mats[i].rows, mats[j].cols) for j in range(len(mats))] for i in range(len(mats))] return ImmutableDenseMatrix(data)
def test_issue_12533(): d = IndexedBase('d') assert IndexedBase(range(5)) == Range(0, 5, 1) assert d[0].subs(Symbol("d"), range(5)) == 0 assert d[0].subs(d, range(5)) == 0 assert d[1].subs(d, range(5)) == 1 assert Indexed(Range(5), 2) == 2
def guess_generating_function_rational(v, X=Symbol('x'), maxcoeff=1024): """ Tries to "guess" a rational generating function for a sequence of rational numbers v. Examples ======== >>> from sympy.concrete.guess import guess_generating_function_rational >>> from sympy import fibonacci >>> l = [fibonacci(k) for k in range(5,15)] >>> guess_generating_function_rational(l) (3*x + 5)/(-x**2 - x + 1) See also ======== See function sympy.series.approximants and mpmath.pade """ # a) compute the denominator as q q = find_simple_recurrence_vector(v, maxcoeff=maxcoeff) n = len(q) if n <= 1: return None # b) compute the numerator as p p = [sum(v[i-k]*q[k] for k in range(min(i+1, n))) for i in range(len(v))] # TODO: maybe better with: len(v)>>1 return (sum(p[k]*X**k for k in range(len(p))) / sum(q[k]*X**k for k in range(n)))
def eval_levicivita(*args): """Evaluate Levi-Civita symbol.""" from sympy import factorial n = len(args) return prod( prod(args[j] - args[i] for j in range(i + 1, n)) / factorial(i) for i in range(n))
def _complexes_sorted(cls, complexes): """Make complex isolating intervals disjoint and sort roots. """ complexes = cls._refine_complexes(complexes) # XXX don't sort until you are sure that it is compatible # with the indexing method but assert that the desired state # is not broken C, F = 0, 1 # location of ComplexInterval and factor fs = set([i[F] for i in complexes]) for i in range(1, len(complexes)): if complexes[i][F] != complexes[i - 1][F]: # if this fails the factors of a root were not # contiguous because a discontinuity should only # happen once fs.remove(complexes[i - 1][F]) for i in range(len(complexes)): # negative im part (conj=True) comes before # positive im part (conj=False) assert complexes[i][C].conj is (i % 2 == 0) # update cache cache = {} # -- collate for root, factor, _ in complexes: cache.setdefault(factor, []).append(root) # -- store for factor, roots in cache.items(): _complexes_cache[factor] = roots return complexes
def decrement_part(self, part): """Decrements part (a subrange of pstack), if possible, returning True iff the part was successfully decremented. If you think of the v values in the part as a multi-digit integer (least significant digit on the right) this is basically decrementing that integer, but with the extra constraint that the leftmost digit cannot be decremented to 0. Parameters ========== part The part, represented as a list of PartComponent objects, which is to be decremented. """ plen = len(part) for j in range(plen - 1, -1, -1): if (j == 0 and part[j].v > 1) or (j > 0 and part[j].v > 0): # found val to decrement part[j].v -= 1 # Reset trailing parts back to maximum for k in range(j + 1, plen): part[k].v = part[k].u return True return False
def _eval_expand_func(self, **hints): from sympy import Sum n = self.args[0] m = self.args[1] if len(self.args) == 2 else 1 if m == S.One: if n.is_Add: off = n.args[0] nnew = n - off if off.is_Integer and off.is_positive: result = [S.One/(nnew + i) for i in range(off, 0, -1)] + [harmonic(nnew)] return Add(*result) elif off.is_Integer and off.is_negative: result = [-S.One/(nnew + i) for i in range(0, off, -1)] + [harmonic(nnew)] return Add(*result) if n.is_Rational: # Expansions for harmonic numbers at general rational arguments (u + p/q) # Split n as u + p/q with p < q p, q = n.as_numer_denom() u = p // q p = p - u * q if u.is_nonnegative and p.is_positive and q.is_positive and p < q: k = Dummy("k") t1 = q * Sum(1 / (q * k + p), (k, 0, u)) t2 = 2 * Sum(cos((2 * pi * p * k) / S(q)) * log(sin((pi * k) / S(q))), (k, 1, floor((q - 1) / S(2)))) t3 = (pi / 2) * cot((pi * p) / q) + log(2 * q) return t1 + t2 - t3 return self
def _initialize_enumeration(self, multiplicities): """Allocates and initializes the partition stack. This is called from the enumeration/counting routines, so there is no need to call it separately.""" num_components = len(multiplicities) # cardinality is the total number of elements, whether or not distinct cardinality = sum(multiplicities) # pstack is the partition stack, which is segmented by # f into parts. self.pstack = [PartComponent() for i in range(num_components * cardinality + 1)] self.f = [0] * (cardinality + 1) # Initial state - entire multiset in one part. for j in range(num_components): ps = self.pstack[j] ps.c = j ps.u = multiplicities[j] ps.v = multiplicities[j] self.f[0] = 0 self.f[1] = num_components self.lpart = 0
def _walsh_hadamard_transform(seq, inverse=False): """Utility function for the Walsh Hadamard Transform""" if not iterable(seq): raise TypeError("Expected a sequence of coefficients " "for Walsh Hadamard Transform") a = [sympify(arg) for arg in seq] n = len(a) if n < 2: return a if n&(n - 1): n = 2**n.bit_length() a += [S.Zero]*(n - len(a)) h = 2 while h <= n: hf, ut = h // 2, n // h for i in range(0, n, h): for j in range(hf): u, v = a[i + j], a[i + j + hf] a[i + j], a[i + j + hf] = u + v, u - v h *= 2 if inverse: a = [x/n for x in a] return a
def _multiset_histogram(n): """Return tuple used in permutation and combination counting. Input is a dictionary giving items with counts as values or a sequence of items (which need not be sorted). The data is stored in a class deriving from tuple so it is easily recognized and so it can be converted easily to a list. """ if type(n) is dict: # item: count if not all(isinstance(v, int) and v >= 0 for v in n.values()): raise ValueError tot = sum(n.values()) items = sum(1 for k in n if n[k] > 0) return _MultisetHistogram([n[k] for k in n if n[k] > 0] + [items, tot]) else: n = list(n) s = set(n) if len(s) == len(n): n = [1]*len(n) n.extend([len(n), len(n)]) return _MultisetHistogram(n) m = dict(zip(s, range(len(s)))) d = dict(zip(range(len(s)), [0]*len(s))) for i in n: d[m[i]] += 1 return _multiset_histogram(d)
def eval(cls, x, k): x = sympify(x) k = sympify(k) if x is S.NaN: return S.NaN elif k.is_Integer: if k is S.NaN: return S.NaN elif k is S.Zero: return S.One else: if k.is_positive: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: if k.is_odd: return S.NegativeInfinity else: return S.Infinity else: return reduce(lambda r, i: r * (x - i), range(0, int(k)), 1) else: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: return S.Infinity else: return 1 / reduce(lambda r, i: r * (x + i), range(1, abs(int(k)) + 1), 1)
def f(): for u in range(1, len(self.u_set)): glBegin(GL_QUAD_STRIP) for v in range(len(self.v_set)): pa = self.verts[u - 1][v] pb = self.verts[u][v] if pa is None or pb is None: glEnd() glBegin(GL_QUAD_STRIP) continue if use_cverts: ca = self.cverts[u - 1][v] cb = self.cverts[u][v] if ca is None: ca = (0, 0, 0) if cb is None: cb = (0, 0, 0) else: if use_solid_color: ca = cb = self.default_solid_color else: ca = cb = self.default_wireframe_color glColor3f(*ca) glVertex3f(*pa) glColor3f(*cb) glVertex3f(*pb) glEnd()
def _form_fr(self, fl): """Form the generalized active force.""" if fl != None and (len(fl) == 0 or not iterable(fl)): raise ValueError('Force pairs must be supplied in an ' 'non-empty iterable or None.') N = self._inertial # pull out relevant velocities for constructing partial velocities vel_list, f_list = _f_list_parser(fl, N) vel_list = [msubs(i, self._qdot_u_map) for i in vel_list] # Fill Fr with dot product of partial velocities and forces o = len(self.u) b = len(f_list) FR = zeros(o, 1) partials = partial_velocity(vel_list, self.u, N) for i in range(o): FR[i] = sum(partials[j][i] & f_list[j] for j in range(b)) # In case there are dependent speeds if self._udep: p = o - len(self._udep) FRtilde = FR[:p, 0] FRold = FR[p:o, 0] FRtilde += self._Ars.T * FRold FR = FRtilde self._forcelist = fl self._fr = FR return FR
def test_bicycle(): if ON_TRAVIS: skip("Too slow for travis.") # Code to get equations of motion for a bicycle modeled as in: # J.P Meijaard, Jim M Papadopoulos, Andy Ruina and A.L Schwab. Linearized # dynamics equations for the balance and steer of a bicycle: a benchmark # and review. Proceedings of The Royal Society (2007) 463, 1955-1982 # doi: 10.1098/rspa.2007.1857 # Note that this code has been crudely ported from Autolev, which is the # reason for some of the unusual naming conventions. It was purposefully as # similar as possible in order to aide debugging. # Declare Coordinates & Speeds # Simple definitions for qdots - qd = u # Speeds are: yaw frame ang. rate, roll frame ang. rate, rear wheel frame # ang. rate (spinning motion), frame ang. rate (pitching motion), steering # frame ang. rate, and front wheel ang. rate (spinning motion). # Wheel positions are ignorable coordinates, so they are not introduced. q1, q2, q4, q5 = dynamicsymbols('q1 q2 q4 q5') q1d, q2d, q4d, q5d = dynamicsymbols('q1 q2 q4 q5', 1) u1, u2, u3, u4, u5, u6 = dynamicsymbols('u1 u2 u3 u4 u5 u6') u1d, u2d, u3d, u4d, u5d, u6d = dynamicsymbols('u1 u2 u3 u4 u5 u6', 1) # Declare System's Parameters WFrad, WRrad, htangle, forkoffset = symbols('WFrad WRrad htangle forkoffset') forklength, framelength, forkcg1 = symbols('forklength framelength forkcg1') forkcg3, framecg1, framecg3, Iwr11 = symbols('forkcg3 framecg1 framecg3 Iwr11') Iwr22, Iwf11, Iwf22, Iframe11 = symbols('Iwr22 Iwf11 Iwf22 Iframe11') Iframe22, Iframe33, Iframe31, Ifork11 = symbols('Iframe22 Iframe33 Iframe31 Ifork11') Ifork22, Ifork33, Ifork31, g = symbols('Ifork22 Ifork33 Ifork31 g') mframe, mfork, mwf, mwr = symbols('mframe mfork mwf mwr') # Set up reference frames for the system # N - inertial # Y - yaw # R - roll # WR - rear wheel, rotation angle is ignorable coordinate so not oriented # Frame - bicycle frame # TempFrame - statically rotated frame for easier reference inertia definition # Fork - bicycle fork # TempFork - statically rotated frame for easier reference inertia definition # WF - front wheel, again posses a ignorable coordinate N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) R = Y.orientnew('R', 'Axis', [q2, Y.x]) Frame = R.orientnew('Frame', 'Axis', [q4 + htangle, R.y]) WR = ReferenceFrame('WR') TempFrame = Frame.orientnew('TempFrame', 'Axis', [-htangle, Frame.y]) Fork = Frame.orientnew('Fork', 'Axis', [q5, Frame.x]) TempFork = Fork.orientnew('TempFork', 'Axis', [-htangle, Fork.y]) WF = ReferenceFrame('WF') # Kinematics of the Bicycle First block of code is forming the positions of # the relevant points # rear wheel contact -> rear wheel mass center -> frame mass center + # frame/fork connection -> fork mass center + front wheel mass center -> # front wheel contact point WR_cont = Point('WR_cont') WR_mc = WR_cont.locatenew('WR_mc', WRrad * R.z) Steer = WR_mc.locatenew('Steer', framelength * Frame.z) Frame_mc = WR_mc.locatenew('Frame_mc', - framecg1 * Frame.x + framecg3 * Frame.z) Fork_mc = Steer.locatenew('Fork_mc', - forkcg1 * Fork.x + forkcg3 * Fork.z) WF_mc = Steer.locatenew('WF_mc', forklength * Fork.x + forkoffset * Fork.z) WF_cont = WF_mc.locatenew('WF_cont', WFrad * (dot(Fork.y, Y.z) * Fork.y - Y.z).normalize()) # Set the angular velocity of each frame. # Angular accelerations end up being calculated automatically by # differentiating the angular velocities when first needed. # u1 is yaw rate # u2 is roll rate # u3 is rear wheel rate # u4 is frame pitch rate # u5 is fork steer rate # u6 is front wheel rate Y.set_ang_vel(N, u1 * Y.z) R.set_ang_vel(Y, u2 * R.x) WR.set_ang_vel(Frame, u3 * Frame.y) Frame.set_ang_vel(R, u4 * Frame.y) Fork.set_ang_vel(Frame, u5 * Fork.x) WF.set_ang_vel(Fork, u6 * Fork.y) # Form the velocities of the previously defined points, using the 2 - point # theorem (written out by hand here). Accelerations again are calculated # automatically when first needed. WR_cont.set_vel(N, 0) WR_mc.v2pt_theory(WR_cont, N, WR) Steer.v2pt_theory(WR_mc, N, Frame) Frame_mc.v2pt_theory(WR_mc, N, Frame) Fork_mc.v2pt_theory(Steer, N, Fork) WF_mc.v2pt_theory(Steer, N, Fork) WF_cont.v2pt_theory(WF_mc, N, WF) # Sets the inertias of each body. Uses the inertia frame to construct the # inertia dyadics. Wheel inertias are only defined by principle moments of # inertia, and are in fact constant in the frame and fork reference frames; # it is for this reason that the orientations of the wheels does not need # to be defined. The frame and fork inertias are defined in the 'Temp' # frames which are fixed to the appropriate body frames; this is to allow # easier input of the reference values of the benchmark paper. Note that # due to slightly different orientations, the products of inertia need to # have their signs flipped; this is done later when entering the numerical # value. Frame_I = (inertia(TempFrame, Iframe11, Iframe22, Iframe33, 0, 0, Iframe31), Frame_mc) Fork_I = (inertia(TempFork, Ifork11, Ifork22, Ifork33, 0, 0, Ifork31), Fork_mc) WR_I = (inertia(Frame, Iwr11, Iwr22, Iwr11), WR_mc) WF_I = (inertia(Fork, Iwf11, Iwf22, Iwf11), WF_mc) # Declaration of the RigidBody containers. :: BodyFrame = RigidBody('BodyFrame', Frame_mc, Frame, mframe, Frame_I) BodyFork = RigidBody('BodyFork', Fork_mc, Fork, mfork, Fork_I) BodyWR = RigidBody('BodyWR', WR_mc, WR, mwr, WR_I) BodyWF = RigidBody('BodyWF', WF_mc, WF, mwf, WF_I) # The kinematic differential equations; they are defined quite simply. Each # entry in this list is equal to zero. kd = [q1d - u1, q2d - u2, q4d - u4, q5d - u5] # The nonholonomic constraints are the velocity of the front wheel contact # point dotted into the X, Y, and Z directions; the yaw frame is used as it # is "closer" to the front wheel (1 less DCM connecting them). These # constraints force the velocity of the front wheel contact point to be 0 # in the inertial frame; the X and Y direction constraints enforce a # "no-slip" condition, and the Z direction constraint forces the front # wheel contact point to not move away from the ground frame, essentially # replicating the holonomic constraint which does not allow the frame pitch # to change in an invalid fashion. conlist_speed = [WF_cont.vel(N) & Y.x, WF_cont.vel(N) & Y.y, WF_cont.vel(N) & Y.z] # The holonomic constraint is that the position from the rear wheel contact # point to the front wheel contact point when dotted into the # normal-to-ground plane direction must be zero; effectively that the front # and rear wheel contact points are always touching the ground plane. This # is actually not part of the dynamic equations, but instead is necessary # for the lineraization process. conlist_coord = [WF_cont.pos_from(WR_cont) & Y.z] # The force list; each body has the appropriate gravitational force applied # at its mass center. FL = [(Frame_mc, -mframe * g * Y.z), (Fork_mc, -mfork * g * Y.z), (WF_mc, -mwf * g * Y.z), (WR_mc, -mwr * g * Y.z)] BL = [BodyFrame, BodyFork, BodyWR, BodyWF] # The N frame is the inertial frame, coordinates are supplied in the order # of independent, dependent coordinates, as are the speeds. The kinematic # differential equation are also entered here. Here the dependent speeds # are specified, in the same order they were provided in earlier, along # with the non-holonomic constraints. The dependent coordinate is also # provided, with the holonomic constraint. Again, this is only provided # for the linearization process. KM = KanesMethod(N, q_ind=[q1, q2, q5], q_dependent=[q4], configuration_constraints=conlist_coord, u_ind=[u2, u3, u5], u_dependent=[u1, u4, u6], velocity_constraints=conlist_speed, kd_eqs=kd) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=SymPyDeprecationWarning) (fr, frstar) = KM.kanes_equations(FL, BL) # This is the start of entering in the numerical values from the benchmark # paper to validate the eigen values of the linearized equations from this # model to the reference eigen values. Look at the aforementioned paper for # more information. Some of these are intermediate values, used to # transform values from the paper into the coordinate systems used in this # model. PaperRadRear = 0.3 PaperRadFront = 0.35 HTA = evalf.N(pi / 2 - pi / 10) TrailPaper = 0.08 rake = evalf.N(-(TrailPaper*sin(HTA)-(PaperRadFront*cos(HTA)))) PaperWb = 1.02 PaperFrameCgX = 0.3 PaperFrameCgZ = 0.9 PaperForkCgX = 0.9 PaperForkCgZ = 0.7 FrameLength = evalf.N(PaperWb*sin(HTA)-(rake-(PaperRadFront-PaperRadRear)*cos(HTA))) FrameCGNorm = evalf.N((PaperFrameCgZ - PaperRadRear-(PaperFrameCgX/sin(HTA))*cos(HTA))*sin(HTA)) FrameCGPar = evalf.N((PaperFrameCgX / sin(HTA) + (PaperFrameCgZ - PaperRadRear - PaperFrameCgX / sin(HTA) * cos(HTA)) * cos(HTA))) tempa = evalf.N((PaperForkCgZ - PaperRadFront)) tempb = evalf.N((PaperWb-PaperForkCgX)) tempc = evalf.N(sqrt(tempa**2+tempb**2)) PaperForkL = evalf.N((PaperWb*cos(HTA)-(PaperRadFront-PaperRadRear)*sin(HTA))) ForkCGNorm = evalf.N(rake+(tempc * sin(pi/2-HTA-acos(tempa/tempc)))) ForkCGPar = evalf.N(tempc * cos((pi/2-HTA)-acos(tempa/tempc))-PaperForkL) # Here is the final assembly of the numerical values. The symbol 'v' is the # forward speed of the bicycle (a concept which only makes sense in the # upright, static equilibrium case?). These are in a dictionary which will # later be substituted in. Again the sign on the *product* of inertia # values is flipped here, due to different orientations of coordinate # systems. v = symbols('v') val_dict = {WFrad: PaperRadFront, WRrad: PaperRadRear, htangle: HTA, forkoffset: rake, forklength: PaperForkL, framelength: FrameLength, forkcg1: ForkCGPar, forkcg3: ForkCGNorm, framecg1: FrameCGNorm, framecg3: FrameCGPar, Iwr11: 0.0603, Iwr22: 0.12, Iwf11: 0.1405, Iwf22: 0.28, Ifork11: 0.05892, Ifork22: 0.06, Ifork33: 0.00708, Ifork31: 0.00756, Iframe11: 9.2, Iframe22: 11, Iframe33: 2.8, Iframe31: -2.4, mfork: 4, mframe: 85, mwf: 3, mwr: 2, g: 9.81, q1: 0, q2: 0, q4: 0, q5: 0, u1: 0, u2: 0, u3: v / PaperRadRear, u4: 0, u5: 0, u6: v / PaperRadFront} # Linearizes the forcing vector; the equations are set up as MM udot = # forcing, where MM is the mass matrix, udot is the vector representing the # time derivatives of the generalized speeds, and forcing is a vector which # contains both external forcing terms and internal forcing terms, such as # centripital or coriolis forces. This actually returns a matrix with as # many rows as *total* coordinates and speeds, but only as many columns as # independent coordinates and speeds. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=SymPyDeprecationWarning) forcing_lin = KM.linearize()[0] # As mentioned above, the size of the linearized forcing terms is expanded # to include both q's and u's, so the mass matrix must have this done as # well. This will likely be changed to be part of the linearized process, # for future reference. MM_full = KM.mass_matrix_full MM_full_s = msubs(MM_full, val_dict) forcing_lin_s = msubs(forcing_lin, KM.kindiffdict(), val_dict) MM_full_s = MM_full_s.evalf() forcing_lin_s = forcing_lin_s.evalf() # Finally, we construct an "A" matrix for the form xdot = A x (x being the # state vector, although in this case, the sizes are a little off). The # following line extracts only the minimum entries required for eigenvalue # analysis, which correspond to rows and columns for lean, steer, lean # rate, and steer rate. Amat = MM_full_s.inv() * forcing_lin_s A = Amat.extract([1, 2, 4, 6], [1, 2, 3, 5]) # Precomputed for comparison Res = Matrix([[ 0, 0, 1.0, 0], [ 0, 0, 0, 1.0], [9.48977444677355, -0.891197738059089*v**2 - 0.571523173729245, -0.105522449805691*v, -0.330515398992311*v], [11.7194768719633, -1.97171508499972*v**2 + 30.9087533932407, 3.67680523332152*v, -3.08486552743311*v]]) # Actual eigenvalue comparison eps = 1.e-12 for i in range(6): error = Res.subs(v, i) - A.subs(v, i) assert all(abs(x) < eps for x in error)
def test_factorint(): assert primefactors(123456) == [2, 3, 643] assert factorint(0) == {0: 1} assert factorint(1) == {} assert factorint(-1) == {-1: 1} assert factorint(-2) == {-1: 1, 2: 1} assert factorint(-16) == {-1: 1, 2: 4} assert factorint(2) == {2: 1} assert factorint(126) == {2: 1, 3: 2, 7: 1} assert factorint(123456) == {2: 6, 3: 1, 643: 1} assert factorint(5951757) == {3: 1, 7: 1, 29: 2, 337: 1} assert factorint(64015937) == {7993: 1, 8009: 1} assert factorint(2**(2**6) + 1) == {274177: 1, 67280421310721: 1} assert multiproduct(factorint(fac(200))) == fac(200) for b, e in factorint(fac(150)).items(): assert e == fac_multiplicity(150, b) assert factorint(103005006059**7) == {103005006059: 7} assert factorint(31337**191) == {31337: 191} assert factorint(2**1000 * 3**500 * 257**127 * 383**60) == \ {2: 1000, 3: 500, 257: 127, 383: 60} assert len(factorint(fac(10000))) == 1229 assert factorint(12932983746293756928584532764589230) == \ {2: 1, 5: 1, 73: 1, 727719592270351: 1, 63564265087747: 1, 383: 1} assert factorint(727719592270351) == {727719592270351: 1} assert factorint(2**64 + 1, use_trial=False) == factorint(2**64 + 1) for n in range(60000): assert multiproduct(factorint(n)) == n assert pollard_rho(2**64 + 1, seed=1) == 274177 assert pollard_rho(19, seed=1) is None assert factorint(3, limit=2) == {3: 1} assert factorint(12345) == {3: 1, 5: 1, 823: 1} assert factorint(12345, limit=3) == { 4115: 1, 3: 1 } # the 5 is greater than the limit assert factorint(1, limit=1) == {} assert factorint(0, 3) == {0: 1} assert factorint(12, limit=1) == {12: 1} assert factorint(30, limit=2) == {2: 1, 15: 1} assert factorint(16, limit=2) == {2: 4} assert factorint(124, limit=3) == {2: 2, 31: 1} assert factorint(4 * 31**2, limit=3) == {2: 2, 31: 2} p1 = nextprime(2**32) p2 = nextprime(2**16) p3 = nextprime(p2) assert factorint(p1 * p2 * p3) == {p1: 1, p2: 1, p3: 1} assert factorint(13 * 17 * 19, limit=15) == {13: 1, 17 * 19: 1} assert factorint(1951 * 15013 * 15053, limit=2000) == { 225990689: 1, 1951: 1 } assert factorint(primorial(17) + 1, use_pm1=0) == \ {long(19026377261): 1, 3467: 1, 277: 1, 105229: 1} # when prime b is closer than approx sqrt(8*p) to prime p then they are # "close" and have a trivial factorization a = nextprime(2**2**8) # 78 digits b = nextprime(a + 2**2**4) assert 'Fermat' in capture(lambda: factorint(a * b, verbose=1)) raises(ValueError, lambda: pollard_rho(4)) raises(ValueError, lambda: pollard_pm1(3)) raises(ValueError, lambda: pollard_pm1(10, B=2)) # verbose coverage n = nextprime(2**16) * nextprime(2**17) * nextprime(1901) assert 'with primes' in capture(lambda: factorint(n, verbose=1)) capture(lambda: factorint(nextprime(2**16) * 1012, verbose=1)) n = nextprime(2**17) capture(lambda: factorint(n**3, verbose=1)) # perfect power termination capture(lambda: factorint(2 * n, verbose=1)) # factoring complete msg # exceed 1st n = nextprime(2**17) n *= nextprime(n) assert '1000' in capture(lambda: factorint(n, limit=1000, verbose=1)) n *= nextprime(n) assert len(factorint(n)) == 3 assert len(factorint(n, limit=p1)) == 3 n *= nextprime(2 * n) # exceed 2nd assert '2001' in capture(lambda: factorint(n, limit=2000, verbose=1)) assert capture(lambda: factorint(n, limit=4000, verbose=1)).count( 'Pollard') == 2 # non-prime pm1 result n = nextprime(8069) n *= nextprime(2 * n) * nextprime(2 * n, 2) capture(lambda: factorint(n, verbose=1)) # non-prime pm1 result # factor fermat composite p1 = nextprime(2**17) p2 = nextprime(2 * p1) assert factorint((p1 * p2**2)**3) == {p1: 3, p2: 6} # Test for non integer input raises(ValueError, lambda: factorint(4.5))
def test_sort_variable(): vsort = Derivative._sort_variable_count def vsort0(*v, **kw): reverse = kw.get('reverse', False) return [i[0] for i in vsort([(i, 0) for i in ( reversed(v) if reverse else v)])] for R in range(2): assert vsort0(y, x, reverse=R) == [x, y] assert vsort0(f(x), x, reverse=R) == [x, f(x)] assert vsort0(f(y), f(x), reverse=R) == [f(x), f(y)] assert vsort0(g(x), f(y), reverse=R) == [f(y), g(x)] assert vsort0(f(x, y), f(x), reverse=R) == [f(x), f(x, y)] fx = f(x).diff(x) assert vsort0(fx, y, reverse=R) == [y, fx] fy = f(y).diff(y) assert vsort0(fy, fx, reverse=R) == [fx, fy] fxx = fx.diff(x) assert vsort0(fxx, fx, reverse=R) == [fx, fxx] assert vsort0(Basic(x), f(x), reverse=R) == [f(x), Basic(x)] assert vsort0(Basic(y), Basic(x), reverse=R) == [Basic(x), Basic(y)] assert vsort0(Basic(y, z), Basic(x), reverse=R) == [ Basic(x), Basic(y, z)] assert vsort0(fx, x, reverse=R) == [ x, fx] if R else [fx, x] assert vsort0(Basic(x), x, reverse=R) == [ x, Basic(x)] if R else [Basic(x), x] assert vsort0(Basic(f(x)), f(x), reverse=R) == [ f(x), Basic(f(x))] if R else [Basic(f(x)), f(x)] assert vsort0(Basic(x, z), Basic(x), reverse=R) == [ Basic(x), Basic(x, z)] if R else [Basic(x, z), Basic(x)] assert vsort([]) == [] assert _aresame(vsort([(x, 1)]), [Tuple(x, 1)]) assert vsort([(x, y), (x, z)]) == [(x, y + z)] assert vsort([(y, 1), (x, 1 + y)]) == [(x, 1 + y), (y, 1)] # coverage complete; legacy tests below assert vsort([(x, 3), (y, 2), (z, 1)]) == [(x, 3), (y, 2), (z, 1)] assert vsort([(h(x), 1), (g(x), 1), (f(x), 1)]) == [ (f(x), 1), (g(x), 1), (h(x), 1)] assert vsort([(z, 1), (y, 2), (x, 3), (h(x), 1), (g(x), 1), (f(x), 1)]) == [(x, 3), (y, 2), (z, 1), (f(x), 1), (g(x), 1), (h(x), 1)] assert vsort([(x, 1), (f(x), 1), (y, 1), (f(y), 1)]) == [(x, 1), (y, 1), (f(x), 1), (f(y), 1)] assert vsort([(y, 1), (x, 2), (g(x), 1), (f(x), 1), (z, 1), (h(x), 1), (y, 2), (x, 1)]) == [(x, 3), (y, 3), (z, 1), (f(x), 1), (g(x), 1), (h(x), 1)] assert vsort([(z, 1), (y, 1), (f(x), 1), (x, 1), (f(x), 1), (g(x), 1)]) == [(x, 1), (y, 1), (z, 1), (f(x), 2), (g(x), 1)] assert vsort([(z, 1), (y, 2), (f(x), 1), (x, 2), (f(x), 2), (g(x), 1), (z, 2), (z, 1), (y, 1), (x, 1)]) == [(x, 3), (y, 3), (z, 4), (f(x), 3), (g(x), 1)] assert vsort(((y, 2), (x, 1), (y, 1), (x, 1))) == [(x, 2), (y, 3)] assert isinstance(vsort([(x, 3), (y, 2), (z, 1)])[0], Tuple) assert vsort([(x, 1), (f(x), 1), (x, 1)]) == [(x, 2), (f(x), 1)] assert vsort([(y, 2), (x, 3), (z, 1)]) == [(x, 3), (y, 2), (z, 1)] assert vsort([(h(y), 1), (g(x), 1), (f(x), 1)]) == [ (f(x), 1), (g(x), 1), (h(y), 1)] assert vsort([(x, 1), (y, 1), (x, 1)]) == [(x, 2), (y, 1)] assert vsort([(f(x), 1), (f(y), 1), (f(x), 1)]) == [ (f(x), 2), (f(y), 1)] dfx = f(x).diff(x) self = [(dfx, 1), (x, 1)] assert vsort(self) == self assert vsort([ (dfx, 1), (y, 1), (f(x), 1), (x, 1), (f(y), 1), (x, 1)]) == [ (y, 1), (f(x), 1), (f(y), 1), (dfx, 1), (x, 2)] dfy = f(y).diff(y) assert vsort([(dfy, 1), (dfx, 1)]) == [(dfx, 1), (dfy, 1)] d2fx = dfx.diff(x) assert vsort([(d2fx, 1), (dfx, 1)]) == [(dfx, 1), (d2fx, 1)]
Matrix, Basic, Dict, oo, zoo, nan) from sympy.utilities.pytest import XFAIL, raises from sympy.core.basic import _aresame from sympy.core.cache import clear_cache from sympy.core.compatibility import range from sympy.core.expr import unchanged from sympy.core.function import PoleError, _mexpand, arity from sympy.core.sympify import sympify from sympy.sets.sets import FiniteSet from sympy.solvers.solveset import solveset from sympy.tensor.array import NDimArray from sympy.utilities.iterables import subsets, variations from sympy.abc import t, w, x, y, z f, g, h = symbols('f g h', cls=Function) _xi_1, _xi_2, _xi_3 = [Dummy() for i in range(3)] def test_f_expand_complex(): x = Symbol('x', real=True) assert f(x).expand(complex=True) == I*im(f(x)) + re(f(x)) assert exp(x).expand(complex=True) == exp(x) assert exp(I*x).expand(complex=True) == cos(x) + I*sin(x) assert exp(z).expand(complex=True) == cos(im(z))*exp(re(z)) + \ I*sin(im(z))*exp(re(z)) def test_bug1(): e = sqrt(-log(w)) assert e.subs(log(w), -x) == sqrt(x)
def test_ranking(): assert Permutation.unrank_lex(5, 10).rank() == 10 p = Permutation.unrank_lex(15, 225) assert p.rank() == 225 p1 = p.next_lex() assert p1.rank() == 226 assert Permutation.unrank_lex(15, 225).rank() == 225 assert Permutation.unrank_lex(10, 0).is_Identity p = Permutation.unrank_lex(4, 23) assert p.rank() == 23 assert p.array_form == [3, 2, 1, 0] assert p.next_lex() is None p = Permutation([1, 5, 2, 0, 3, 6, 4]) q = Permutation([[1, 2, 3, 5, 6], [0, 4]]) a = [Permutation.unrank_trotterjohnson(4, i).array_form for i in range(5)] assert a == [[0, 1, 2, 3], [0, 1, 3, 2], [0, 3, 1, 2], [3, 0, 1, 2], [3, 0, 2, 1] ] assert [Permutation(pa).rank_trotterjohnson() for pa in a] == list(range(5)) assert Permutation([0, 1, 2, 3]).next_trotterjohnson() == \ Permutation([0, 1, 3, 2]) assert q.rank_trotterjohnson() == 2283 assert p.rank_trotterjohnson() == 3389 assert Permutation([1, 0]).rank_trotterjohnson() == 1 a = Permutation(list(range(3))) b = a l = [] tj = [] for i in range(6): l.append(a) tj.append(b) a = a.next_lex() b = b.next_trotterjohnson() assert a == b is None assert {tuple(a) for a in l} == {tuple(a) for a in tj} p = Permutation([2, 5, 1, 6, 3, 0, 4]) q = Permutation([[6], [5], [0, 1, 2, 3, 4]]) assert p.rank() == 1964 assert q.rank() == 870 assert Permutation([]).rank_nonlex() == 0 prank = p.rank_nonlex() assert prank == 1600 assert Permutation.unrank_nonlex(7, 1600) == p qrank = q.rank_nonlex() assert qrank == 41 assert Permutation.unrank_nonlex(7, 41) == Permutation(q.array_form) a = [Permutation.unrank_nonlex(4, i).array_form for i in range(24)] assert a == [ [1, 2, 3, 0], [3, 2, 0, 1], [1, 3, 0, 2], [1, 2, 0, 3], [2, 3, 1, 0], [2, 0, 3, 1], [3, 0, 1, 2], [2, 0, 1, 3], [1, 3, 2, 0], [3, 0, 2, 1], [1, 0, 3, 2], [1, 0, 2, 3], [2, 1, 3, 0], [2, 3, 0, 1], [3, 1, 0, 2], [2, 1, 0, 3], [3, 2, 1, 0], [0, 2, 3, 1], [0, 3, 1, 2], [0, 2, 1, 3], [3, 1, 2, 0], [0, 3, 2, 1], [0, 1, 3, 2], [0, 1, 2, 3]] N = 10 p1 = Permutation(a[0]) for i in range(1, N+1): p1 = p1*Permutation(a[i]) p2 = Permutation.rmul_with_af(*[Permutation(h) for h in a[N::-1]]) assert p1 == p2 ok = [] p = Permutation([1, 0]) for i in range(3): ok.append(p.array_form) p = p.next_nonlex() if p is None: ok.append(None) break assert ok == [[1, 0], [0, 1], None] assert Permutation([3, 2, 0, 1]).next_nonlex() == Permutation([1, 3, 0, 2]) assert [Permutation(pa).rank_nonlex() for pa in a] == list(range(24))
def test_Permutation(): # don't auto fill 0 raises(ValueError, lambda: Permutation([1])) p = Permutation([0, 1, 2, 3]) # call as bijective assert [p(i) for i in range(p.size)] == list(p) # call as operator assert p(list(range(p.size))) == list(p) # call as function assert list(p(1, 2)) == [0, 2, 1, 3] # conversion to list assert list(p) == list(range(4)) assert Permutation(size=4) == Permutation(3) assert Permutation(Permutation(3), size=5) == Permutation(4) # cycle form with size assert Permutation([[1, 2]], size=4) == Permutation([[1, 2], [0], [3]]) # random generation assert Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1])) p = Permutation([2, 5, 1, 6, 3, 0, 4]) q = Permutation([[1], [0, 3, 5, 6, 2, 4]]) assert len({p, p}) == 1 r = Permutation([1, 3, 2, 0, 4, 6, 5]) ans = Permutation(_af_rmuln(*[w.array_form for w in (p, q, r)])).array_form assert rmul(p, q, r).array_form == ans # make sure no other permutation of p, q, r could have given # that answer for a, b, c in permutations((p, q, r)): if (a, b, c) == (p, q, r): continue assert rmul(a, b, c).array_form != ans assert p.support() == list(range(7)) assert q.support() == [0, 2, 3, 4, 5, 6] assert Permutation(p.cyclic_form).array_form == p.array_form assert p.cardinality == 5040 assert q.cardinality == 5040 assert q.cycles == 2 assert rmul(q, p) == Permutation([4, 6, 1, 2, 5, 3, 0]) assert rmul(p, q) == Permutation([6, 5, 3, 0, 2, 4, 1]) assert _af_rmul(p.array_form, q.array_form) == \ [6, 5, 3, 0, 2, 4, 1] assert rmul(Permutation([[1, 2, 3], [0, 4]]), Permutation([[1, 2, 4], [0], [3]])).cyclic_form == \ [[0, 4, 2], [1, 3]] assert q.array_form == [3, 1, 4, 5, 0, 6, 2] assert q.cyclic_form == [[0, 3, 5, 6, 2, 4]] assert q.full_cyclic_form == [[0, 3, 5, 6, 2, 4], [1]] assert p.cyclic_form == [[0, 2, 1, 5], [3, 6, 4]] t = p.transpositions() assert t == [(0, 5), (0, 1), (0, 2), (3, 4), (3, 6)] assert Permutation.rmul(*[Permutation(Cycle(*ti)) for ti in (t)]) assert Permutation([1, 0]).transpositions() == [(0, 1)] assert p**13 == p assert q**0 == Permutation(list(range(q.size))) assert q**-2 == ~q**2 assert q**2 == Permutation([5, 1, 0, 6, 3, 2, 4]) assert q**3 == q**2*q assert q**4 == q**2*q**2 a = Permutation(1, 3) b = Permutation(2, 0, 3) I = Permutation(3) assert ~a == a**-1 assert a*~a == I assert a*b**-1 == a*~b ans = Permutation(0, 5, 3, 1, 6)(2, 4) assert (p + q.rank()).rank() == ans.rank() assert (p + q.rank())._rank == ans.rank() assert (q + p.rank()).rank() == ans.rank() raises(TypeError, lambda: p + Permutation(list(range(10)))) assert (p - q.rank()).rank() == Permutation(0, 6, 3, 1, 2, 5, 4).rank() assert p.rank() - q.rank() < 0 # for coverage: make sure mod is used assert (q - p.rank()).rank() == Permutation(1, 4, 6, 2)(3, 5).rank() assert p*q == Permutation(_af_rmuln(*[list(w) for w in (q, p)])) assert p*Permutation([]) == p assert Permutation([])*p == p assert p*Permutation([[0, 1]]) == Permutation([2, 5, 0, 6, 3, 1, 4]) assert Permutation([[0, 1]])*p == Permutation([5, 2, 1, 6, 3, 0, 4]) pq = p ^ q assert pq == Permutation([5, 6, 0, 4, 1, 2, 3]) assert pq == rmul(q, p, ~q) qp = q ^ p assert qp == Permutation([4, 3, 6, 2, 1, 5, 0]) assert qp == rmul(p, q, ~p) raises(ValueError, lambda: p ^ Permutation([])) assert p.commutator(q) == Permutation(0, 1, 3, 4, 6, 5, 2) assert q.commutator(p) == Permutation(0, 2, 5, 6, 4, 3, 1) assert p.commutator(q) == ~q.commutator(p) raises(ValueError, lambda: p.commutator(Permutation([]))) assert len(p.atoms()) == 7 assert q.atoms() == {0, 1, 2, 3, 4, 5, 6} assert p.inversion_vector() == [2, 4, 1, 3, 1, 0] assert q.inversion_vector() == [3, 1, 2, 2, 0, 1] assert Permutation.from_inversion_vector(p.inversion_vector()) == p assert Permutation.from_inversion_vector(q.inversion_vector()).array_form\ == q.array_form raises(ValueError, lambda: Permutation.from_inversion_vector([0, 2])) assert Permutation([i for i in range(500, -1, -1)]).inversions() == 125250 s = Permutation([0, 4, 1, 3, 2]) assert s.parity() == 0 _ = s.cyclic_form # needed to create a value for _cyclic_form assert len(s._cyclic_form) != s.size and s.parity() == 0 assert not s.is_odd assert s.is_even assert Permutation([0, 1, 4, 3, 2]).parity() == 1 assert _af_parity([0, 4, 1, 3, 2]) == 0 assert _af_parity([0, 1, 4, 3, 2]) == 1 s = Permutation([0]) assert s.is_Singleton assert Permutation([]).is_Empty r = Permutation([3, 2, 1, 0]) assert (r**2).is_Identity assert rmul(~p, p).is_Identity assert (~p)**13 == Permutation([5, 2, 0, 4, 6, 1, 3]) assert ~(r**2).is_Identity assert p.max() == 6 assert p.min() == 0 q = Permutation([[6], [5], [0, 1, 2, 3, 4]]) assert q.max() == 4 assert q.min() == 0 p = Permutation([1, 5, 2, 0, 3, 6, 4]) q = Permutation([[1, 2, 3, 5, 6], [0, 4]]) assert p.ascents() == [0, 3, 4] assert q.ascents() == [1, 2, 4] assert r.ascents() == [] assert p.descents() == [1, 2, 5] assert q.descents() == [0, 3, 5] assert Permutation(r.descents()).is_Identity assert p.inversions() == 7 # test the merge-sort with a longer permutation big = list(p) + list(range(p.max() + 1, p.max() + 130)) assert Permutation(big).inversions() == 7 assert p.signature() == -1 assert q.inversions() == 11 assert q.signature() == -1 assert rmul(p, ~p).inversions() == 0 assert rmul(p, ~p).signature() == 1 assert p.order() == 6 assert q.order() == 10 assert (p**(p.order())).is_Identity assert p.length() == 6 assert q.length() == 7 assert r.length() == 4 assert p.runs() == [[1, 5], [2], [0, 3, 6], [4]] assert q.runs() == [[4], [2, 3, 5], [0, 6], [1]] assert r.runs() == [[3], [2], [1], [0]] assert p.index() == 8 assert q.index() == 8 assert r.index() == 3 assert p.get_precedence_distance(q) == q.get_precedence_distance(p) assert p.get_adjacency_distance(q) == p.get_adjacency_distance(q) assert p.get_positional_distance(q) == p.get_positional_distance(q) p = Permutation([0, 1, 2, 3]) q = Permutation([3, 2, 1, 0]) assert p.get_precedence_distance(q) == 6 assert p.get_adjacency_distance(q) == 3 assert p.get_positional_distance(q) == 8 p = Permutation([0, 3, 1, 2, 4]) q = Permutation.josephus(4, 5, 2) assert p.get_adjacency_distance(q) == 3 raises(ValueError, lambda: p.get_adjacency_distance(Permutation([]))) raises(ValueError, lambda: p.get_positional_distance(Permutation([]))) raises(ValueError, lambda: p.get_precedence_distance(Permutation([]))) a = [Permutation.unrank_nonlex(4, i) for i in range(5)] iden = Permutation([0, 1, 2, 3]) for i in range(5): for j in range(i + 1, 5): assert a[i].commutes_with(a[j]) == \ (rmul(a[i], a[j]) == rmul(a[j], a[i])) if a[i].commutes_with(a[j]): assert a[i].commutator(a[j]) == iden assert a[j].commutator(a[i]) == iden a = Permutation(3) b = Permutation(0, 6, 3)(1, 2) assert a.cycle_structure == {1: 4} assert b.cycle_structure == {2: 1, 3: 1, 1: 2}
def kahane_simplify(expression): r""" This function cancels contracted elements in a product of four dimensional gamma matrices, resulting in an expression equal to the given one, without the contracted gamma matrices. Parameters ========== `expression` the tensor expression containing the gamma matrices to simplify. Notes ===== If spinor indices are given, the matrices must be given in the order given in the product. Algorithm ========= The idea behind the algorithm is to use some well-known identities, i.e., for contractions enclosing an even number of `\gamma` matrices `\gamma^\mu \gamma_{a_1} \cdots \gamma_{a_{2N}} \gamma_\mu = 2 (\gamma_{a_{2N}} \gamma_{a_1} \cdots \gamma_{a_{2N-1}} + \gamma_{a_{2N-1}} \cdots \gamma_{a_1} \gamma_{a_{2N}} )` for an odd number of `\gamma` matrices `\gamma^\mu \gamma_{a_1} \cdots \gamma_{a_{2N+1}} \gamma_\mu = -2 \gamma_{a_{2N+1}} \gamma_{a_{2N}} \cdots \gamma_{a_{1}}` Instead of repeatedly applying these identities to cancel out all contracted indices, it is possible to recognize the links that would result from such an operation, the problem is thus reduced to a simple rearrangement of free gamma matrices. Examples ======== When using, always remember that the original expression coefficient has to be handled separately >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, LorentzIndex >>> from sympy.physics.hep.gamma_matrices import kahane_simplify >>> from sympy.tensor.tensor import tensor_indices >>> i0, i1, i2 = tensor_indices('i0:3', LorentzIndex) >>> ta = G(i0)*G(-i0) >>> kahane_simplify(ta) Matrix([ [4, 0, 0, 0], [0, 4, 0, 0], [0, 0, 4, 0], [0, 0, 0, 4]]) >>> tb = G(i0)*G(i1)*G(-i0) >>> kahane_simplify(tb) -2*GammaMatrix(i1) >>> t = G(i0)*G(-i0) >>> kahane_simplify(t) Matrix([ [4, 0, 0, 0], [0, 4, 0, 0], [0, 0, 4, 0], [0, 0, 0, 4]]) >>> t = G(i0)*G(-i0) >>> kahane_simplify(t) Matrix([ [4, 0, 0, 0], [0, 4, 0, 0], [0, 0, 4, 0], [0, 0, 0, 4]]) If there are no contractions, the same expression is returned >>> tc = G(i0)*G(i1) >>> kahane_simplify(tc) GammaMatrix(i0)*GammaMatrix(i1) References ========== [1] Algorithm for Reducing Contracted Products of gamma Matrices, Joseph Kahane, Journal of Mathematical Physics, Vol. 9, No. 10, October 1968. """ if isinstance(expression, Mul): return expression if isinstance(expression, TensAdd): return TensAdd(*[kahane_simplify(arg) for arg in expression.args]) if isinstance(expression, Tensor): return expression assert isinstance(expression, TensMul) gammas = expression.args for gamma in gammas: assert gamma.component == GammaMatrix free = expression.free # spinor_free = [_ for _ in expression.free_in_args if _[1] != 0] # if len(spinor_free) == 2: # spinor_free.sort(key=lambda x: x[2]) # assert spinor_free[0][1] == 1 and spinor_free[-1][1] == 2 # assert spinor_free[0][2] == 0 # elif spinor_free: # raise ValueError('spinor indices do not match') dum = [] for dum_pair in expression.dum: if expression.index_types[dum_pair[0]] == LorentzIndex: dum.append((dum_pair[0], dum_pair[1])) dum = sorted(dum) if len(dum) == 0: # or GammaMatrixHead: # no contractions in `expression`, just return it. return expression # find the `first_dum_pos`, i.e. the position of the first contracted # gamma matrix, Kahane's algorithm as described in his paper requires the # gamma matrix expression to start with a contracted gamma matrix, this is # a workaround which ignores possible initial free indices, and re-adds # them later. first_dum_pos = min(map(min, dum)) # for p1, p2, a1, a2 in expression.dum_in_args: # if p1 != 0 or p2 != 0: # # only Lorentz indices, skip Dirac indices: # continue # first_dum_pos = min(p1, p2) # break total_number = len(free) + len(dum) * 2 number_of_contractions = len(dum) free_pos = [None] * total_number for i in free: free_pos[i[1]] = i[0] # `index_is_free` is a list of booleans, to identify index position # and whether that index is free or dummy. index_is_free = [False] * total_number for i, indx in enumerate(free): index_is_free[indx[1]] = True # `links` is a dictionary containing the graph described in Kahane's paper, # to every key correspond one or two values, representing the linked indices. # All values in `links` are integers, negative numbers are used in the case # where it is necessary to insert gamma matrices between free indices, in # order to make Kahane's algorithm work (see paper). links = dict() for i in range(first_dum_pos, total_number): links[i] = [] # `cum_sign` is a step variable to mark the sign of every index, see paper. cum_sign = -1 # `cum_sign_list` keeps storage for all `cum_sign` (every index). cum_sign_list = [None] * total_number block_free_count = 0 # multiply `resulting_coeff` by the coefficient parameter, the rest # of the algorithm ignores a scalar coefficient. resulting_coeff = S.One # initialize a list of lists of indices. The outer list will contain all # additive tensor expressions, while the inner list will contain the # free indices (rearranged according to the algorithm). resulting_indices = [[]] # start to count the `connected_components`, which together with the number # of contractions, determines a -1 or +1 factor to be multiplied. connected_components = 1 # First loop: here we fill `cum_sign_list`, and draw the links # among consecutive indices (they are stored in `links`). Links among # non-consecutive indices will be drawn later. for i, is_free in enumerate(index_is_free): # if `expression` starts with free indices, they are ignored here; # they are later added as they are to the beginning of all # `resulting_indices` list of lists of indices. if i < first_dum_pos: continue if is_free: block_free_count += 1 # if previous index was free as well, draw an arch in `links`. if block_free_count > 1: links[i - 1].append(i) links[i].append(i - 1) else: # Change the sign of the index (`cum_sign`) if the number of free # indices preceding it is even. cum_sign *= 1 if (block_free_count % 2) else -1 if block_free_count == 0 and i != first_dum_pos: # check if there are two consecutive dummy indices: # in this case create virtual indices with negative position, # these "virtual" indices represent the insertion of two # gamma^0 matrices to separate consecutive dummy indices, as # Kahane's algorithm requires dummy indices to be separated by # free indices. The product of two gamma^0 matrices is unity, # so the new expression being examined is the same as the # original one. if cum_sign == -1: links[-1 - i] = [-1 - i + 1] links[-1 - i + 1] = [-1 - i] if (i - cum_sign) in links: if i != first_dum_pos: links[i].append(i - cum_sign) if block_free_count != 0: if i - cum_sign < len(index_is_free): if index_is_free[i - cum_sign]: links[i - cum_sign].append(i) block_free_count = 0 cum_sign_list[i] = cum_sign # The previous loop has only created links between consecutive free indices, # it is necessary to properly create links among dummy (contracted) indices, # according to the rules described in Kahane's paper. There is only one exception # to Kahane's rules: the negative indices, which handle the case of some # consecutive free indices (Kahane's paper just describes dummy indices # separated by free indices, hinting that free indices can be added without # altering the expression result). for i in dum: # get the positions of the two contracted indices: pos1 = i[0] pos2 = i[1] # create Kahane's upper links, i.e. the upper arcs between dummy # (i.e. contracted) indices: links[pos1].append(pos2) links[pos2].append(pos1) # create Kahane's lower links, this corresponds to the arcs below # the line described in the paper: # first we move `pos1` and `pos2` according to the sign of the indices: linkpos1 = pos1 + cum_sign_list[pos1] linkpos2 = pos2 + cum_sign_list[pos2] # otherwise, perform some checks before creating the lower arcs: # make sure we are not exceeding the total number of indices: if linkpos1 >= total_number: continue if linkpos2 >= total_number: continue # make sure we are not below the first dummy index in `expression`: if linkpos1 < first_dum_pos: continue if linkpos2 < first_dum_pos: continue # check if the previous loop created "virtual" indices between dummy # indices, in such a case relink `linkpos1` and `linkpos2`: if (-1 - linkpos1) in links: linkpos1 = -1 - linkpos1 if (-1 - linkpos2) in links: linkpos2 = -1 - linkpos2 # move only if not next to free index: if linkpos1 >= 0 and not index_is_free[linkpos1]: linkpos1 = pos1 if linkpos2 >= 0 and not index_is_free[linkpos2]: linkpos2 = pos2 # create the lower arcs: if linkpos2 not in links[linkpos1]: links[linkpos1].append(linkpos2) if linkpos1 not in links[linkpos2]: links[linkpos2].append(linkpos1) # This loop starts from the `first_dum_pos` index (first dummy index) # walks through the graph deleting the visited indices from `links`, # it adds a gamma matrix for every free index in encounters, while it # completely ignores dummy indices and virtual indices. pointer = first_dum_pos previous_pointer = 0 while True: if pointer in links: next_ones = links.pop(pointer) else: break if previous_pointer in next_ones: next_ones.remove(previous_pointer) previous_pointer = pointer if next_ones: pointer = next_ones[0] else: break if pointer == previous_pointer: break if pointer >= 0 and free_pos[pointer] is not None: for ri in resulting_indices: ri.append(free_pos[pointer]) # The following loop removes the remaining connected components in `links`. # If there are free indices inside a connected component, it gives a # contribution to the resulting expression given by the factor # `gamma_a gamma_b ... gamma_z + gamma_z ... gamma_b gamma_a`, in Kahanes's # paper represented as {gamma_a, gamma_b, ... , gamma_z}, # virtual indices are ignored. The variable `connected_components` is # increased by one for every connected component this loop encounters. # If the connected component has virtual and dummy indices only # (no free indices), it contributes to `resulting_indices` by a factor of two. # The multiplication by two is a result of the # factor {gamma^0, gamma^0} = 2 I, as it appears in Kahane's paper. # Note: curly brackets are meant as in the paper, as a generalized # multi-element anticommutator! while links: connected_components += 1 pointer = min(links.keys()) previous_pointer = pointer # the inner loop erases the visited indices from `links`, and it adds # all free indices to `prepend_indices` list, virtual indices are # ignored. prepend_indices = [] while True: if pointer in links: next_ones = links.pop(pointer) else: break if previous_pointer in next_ones: if len(next_ones) > 1: next_ones.remove(previous_pointer) previous_pointer = pointer if next_ones: pointer = next_ones[0] if pointer >= first_dum_pos and free_pos[pointer] is not None: prepend_indices.insert(0, free_pos[pointer]) # if `prepend_indices` is void, it means there are no free indices # in the loop (and it can be shown that there must be a virtual index), # loops of virtual indices only contribute by a factor of two: if len(prepend_indices) == 0: resulting_coeff *= 2 # otherwise, add the free indices in `prepend_indices` to # the `resulting_indices`: else: expr1 = prepend_indices expr2 = list(reversed(prepend_indices)) resulting_indices = [ expri + ri for ri in resulting_indices for expri in (expr1, expr2) ] # sign correction, as described in Kahane's paper: resulting_coeff *= -1 if (number_of_contractions - connected_components + 1) % 2 else 1 # power of two factor, as described in Kahane's paper: resulting_coeff *= 2**(number_of_contractions) # If `first_dum_pos` is not zero, it means that there are trailing free gamma # matrices in front of `expression`, so multiply by them: for i in range(0, first_dum_pos): [ri.insert(0, free_pos[i]) for ri in resulting_indices] resulting_expr = S.Zero for i in resulting_indices: temp_expr = S.One for j in i: temp_expr *= GammaMatrix(j) resulting_expr += temp_expr t = resulting_coeff * resulting_expr t1 = None if isinstance(t, TensAdd): t1 = t.args[0] elif isinstance(t, TensMul): t1 = t if t1: pass else: t = eye(4) * t return t
def __iter__(self): for i in range(self.length): pt = self._ith_point(i) yield self.coeff(pt)
def _sympystr(self, p): """ Returns the string representation of 'self'. Examples ======== >>> from sympy import TableForm >>> t = TableForm([[5, 7], [4, 2], [10, 3]]) >>> s = t.as_str() """ column_widths = [0] * self._w lines = [] for line in self._lines: new_line = [] for i in range(self._w): # Format the item somehow if needed: s = str(line[i]) if self._wipe_zeros and (s == "0"): s = " " w = len(s) if w > column_widths[i]: column_widths[i] = w new_line.append(s) lines.append(new_line) # Check heading: if self._headings[0]: self._headings[0] = [str(x) for x in self._headings[0]] _head_width = max([len(x) for x in self._headings[0]]) if self._headings[1]: new_line = [] for i in range(self._w): # Format the item somehow if needed: s = str(self._headings[1][i]) w = len(s) if w > column_widths[i]: column_widths[i] = w new_line.append(s) self._headings[1] = new_line format_str = [] def _align(align, w): return '%%%s%ss' % (("-" if align == "l" else ""), str(w)) format_str = [ _align(align, w) for align, w in zip(self._alignments, column_widths) ] if self._headings[0]: format_str.insert(0, _align(self._head_align, _head_width)) format_str.insert(1, '|') format_str = ' '.join(format_str) + '\n' s = [] if self._headings[1]: d = self._headings[1] if self._headings[0]: d = [""] + d first_line = format_str % tuple(d) s.append(first_line) s.append("-" * (len(first_line) - 1) + "\n") for i, line in enumerate(lines): d = [ l if self._alignments[j] != 'c' else l.center(column_widths[j]) for j, l in enumerate(line) ] if self._headings[0]: l = self._headings[0][i] l = (l if self._head_align != 'c' else l.center(_head_width)) d = [l] + d s.append(format_str % tuple(d)) return ''.join(s)[:-1] # don't include trailing newline
def find_linear_recurrence(self,n,d=None,gfvar=None): r""" Finds the shortest linear recurrence that satisfies the first n terms of sequence of order `\leq` n/2 if possible. If d is specified, find shortest linear recurrence of order `\leq` min(d, n/2) if possible. Returns list of coefficients ``[b(1), b(2), ...]`` corresponding to the recurrence relation ``x(n) = b(1)*x(n-1) + b(2)*x(n-2) + ...`` Returns ``[]`` if no recurrence is found. If gfvar is specified, also returns ordinary generating function as a function of gfvar. Examples ======== >>> from sympy import sequence, sqrt, oo, lucas >>> from sympy.abc import n, x, y >>> sequence(n**2).find_linear_recurrence(10, 2) [] >>> sequence(n**2).find_linear_recurrence(10) [3, -3, 1] >>> sequence(2**n).find_linear_recurrence(10) [2] >>> sequence(23*n**4+91*n**2).find_linear_recurrence(10) [5, -10, 10, -5, 1] >>> sequence(sqrt(5)*(((1 + sqrt(5))/2)**n - (-(1 + sqrt(5))/2)**(-n))/5).find_linear_recurrence(10) [1, 1] >>> sequence(x+y*(-2)**(-n), (n, 0, oo)).find_linear_recurrence(30) [1/2, 1/2] >>> sequence(3*5**n + 12).find_linear_recurrence(20,gfvar=x) ([6, -5], 3*(5 - 21*x)/((x - 1)*(5*x - 1))) >>> sequence(lucas(n)).find_linear_recurrence(15,gfvar=x) ([1, 1], (x - 2)/(x**2 + x - 1)) """ from sympy.matrices import Matrix x = [simplify(expand(t)) for t in self[:n]] lx = len(x) if d is None: r = lx//2 else: r = min(d,lx//2) coeffs = [] for l in range(1, r+1): l2 = 2*l mlist = [] for k in range(l): mlist.append(x[k:k+l]) m = Matrix(mlist) if m.det() != 0: y = simplify(m.LUsolve(Matrix(x[l:l2]))) if lx == l2: coeffs = flatten(y[::-1]) break mlist = [] for k in range(l,lx-l): mlist.append(x[k:k+l]) m = Matrix(mlist) if m*y == Matrix(x[l2:]): coeffs = flatten(y[::-1]) break if gfvar is None: return coeffs else: l = len(coeffs) if l == 0: return [], None else: n, d = x[l-1]*gfvar**(l-1), 1 - coeffs[l-1]*gfvar**l for i in range(l-1): n += x[i]*gfvar**i for j in range(l-i-1): n -= coeffs[i]*x[j]*gfvar**(i+j+1) d -= coeffs[i]*gfvar**(i+1) return coeffs, simplify(factor(n)/factor(d))
def rsolve(f, y, init=None): """ Solve univariate recurrence with rational coefficients. Given `k`-th order linear recurrence `\operatorname{L} y = f`, or equivalently: .. math:: a_{k}(n) y(n+k) + a_{k-1}(n) y(n+k-1) + \cdots + a_{0}(n) y(n) = f(n) where `a_{i}(n)`, for `i=0, \ldots, k`, are polynomials or rational functions in `n`, and `f` is a hypergeometric function or a sum of a fixed number of pairwise dissimilar hypergeometric terms in `n`, finds all solutions or returns ``None``, if none were found. Initial conditions can be given as a dictionary in two forms: (1) ``{ n_0 : v_0, n_1 : v_1, ..., n_m : v_m }`` (2) ``{ y(n_0) : v_0, y(n_1) : v_1, ..., y(n_m) : v_m }`` or as a list ``L`` of values: ``L = [ v_0, v_1, ..., v_m ]`` where ``L[i] = v_i``, for `i=0, \ldots, m`, maps to `y(n_i)`. Examples ======== Lets consider the following recurrence: .. math:: (n - 1) y(n + 2) - (n^2 + 3 n - 2) y(n + 1) + 2 n (n + 1) y(n) = 0 >>> from sympy import Function, rsolve >>> from sympy.abc import n >>> y = Function('y') >>> f = (n - 1)*y(n + 2) - (n**2 + 3*n - 2)*y(n + 1) + 2*n*(n + 1)*y(n) >>> rsolve(f, y(n)) 2**n*C0 + C1*factorial(n) >>> rsolve(f, y(n), { y(0):0, y(1):3 }) 3*2**n - 3*factorial(n) See Also ======== rsolve_poly, rsolve_ratio, rsolve_hyper """ if isinstance(f, Equality): f = f.lhs - f.rhs n = y.args[0] k = Wild('k', exclude=(n,)) # Preprocess user input to allow things like # y(n) + a*(y(n + 1) + y(n - 1))/2 f = f.expand().collect(y.func(Wild('m', integer=True))) h_part = defaultdict(lambda: S.Zero) i_part = S.Zero for g in Add.make_args(f): coeff = S.One kspec = None for h in Mul.make_args(g): if h.is_Function: if h.func == y.func: result = h.args[0].match(n + k) if result is not None: kspec = int(result[k]) else: raise ValueError( "'%s(%s+k)' expected, got '%s'" % (y.func, n, h)) else: raise ValueError( "'%s' expected, got '%s'" % (y.func, h.func)) else: coeff *= h if kspec is not None: h_part[kspec] += coeff else: i_part += coeff for k, coeff in h_part.items(): h_part[k] = simplify(coeff) common = S.One for coeff in h_part.values(): if coeff.is_rational_function(n): if not coeff.is_polynomial(n): common = lcm(common, coeff.as_numer_denom()[1], n) else: raise ValueError( "Polynomial or rational function expected, got '%s'" % coeff) i_numer, i_denom = i_part.as_numer_denom() if i_denom.is_polynomial(n): common = lcm(common, i_denom, n) if common is not S.One: for k, coeff in h_part.items(): numer, denom = coeff.as_numer_denom() h_part[k] = numer*quo(common, denom, n) i_part = i_numer*quo(common, i_denom, n) K_min = min(h_part.keys()) if K_min < 0: K = abs(K_min) H_part = defaultdict(lambda: S.Zero) i_part = i_part.subs(n, n + K).expand() common = common.subs(n, n + K).expand() for k, coeff in h_part.items(): H_part[k + K] = coeff.subs(n, n + K).expand() else: H_part = h_part K_max = max(H_part.keys()) coeffs = [H_part[i] for i in range(K_max + 1)] result = rsolve_hyper(coeffs, -i_part, n, symbols=True) if result is None: return None solution, symbols = result if init == {} or init == []: init = None if symbols and init is not None: if type(init) is list: init = {i: init[i] for i in range(len(init))} equations = [] for k, v in init.items(): try: i = int(k) except TypeError: if k.is_Function and k.func == y.func: i = int(k.args[0]) else: raise ValueError("Integer or term expected, got '%s'" % k) try: eq = solution.limit(n, i) - v except NotImplementedError: eq = solution.subs(n, i) - v equations.append(eq) result = solve(equations, *symbols) if not result: return None else: solution = solution.subs(result) return solution
def __init__(self, data, **kwarg): """ Creates a TableForm. Parameters: data ... 2D data to be put into the table; data can be given as a Matrix headings ... gives the labels for rows and columns: Can be a single argument that applies to both dimensions: - None ... no labels - "automatic" ... labels are 1, 2, 3, ... Can be a list of labels for rows and columns: The lables for each dimension can be given as None, "automatic", or [l1, l2, ...] e.g. ["automatic", None] will number the rows [default: None] alignments ... alignment of the columns with: - "left" or "<" - "center" or "^" - "right" or ">" When given as a single value, the value is used for all columns. The row headings (if given) will be right justified unless an explicit alignment is given for it and all other columns. [default: "left"] formats ... a list of format strings or functions that accept 3 arguments (entry, row number, col number) and return a string for the table entry. (If a function returns None then the _print method will be used.) wipe_zeros ... Don't show zeros in the table. [default: True] pad ... the string to use to indicate a missing value (e.g. elements that are None or those that are missing from the end of a row (i.e. any row that is shorter than the rest is assumed to have missing values). When None, nothing will be shown for values that are missing from the end of a row; values that are None, however, will be shown. [default: None] Examples ======== >>> from sympy import TableForm, Matrix >>> TableForm([[5, 7], [4, 2], [10, 3]]) 5 7 4 2 10 3 >>> TableForm([list('.'*i) for i in range(1, 4)], headings='automatic') | 1 2 3 --------- 1 | . 2 | . . 3 | . . . >>> TableForm([['.'*(j if not i%2 else 1) for i in range(3)] ... for j in range(4)], alignments='rcl') . . . . .. . .. ... . ... """ from sympy import Symbol, S, Matrix from sympy.core.sympify import SympifyError # We only support 2D data. Check the consistency: if isinstance(data, Matrix): data = data.tolist() _w = len(data[0]) _h = len(data) # fill out any short lines pad = kwarg.get('pad', None) ok_None = False if pad is None: pad = " " ok_None = True pad = Symbol(pad) _w = max(len(line) for line in data) for i, line in enumerate(data): if len(line) != _w: line.extend([pad] * (_w - len(line))) for j, lj in enumerate(line): if lj is None: if not ok_None: lj = pad else: try: lj = S(lj) except SympifyError: lj = Symbol(str(lj)) line[j] = lj data[i] = line _lines = Tuple(*data) headings = kwarg.get("headings", [None, None]) if headings == "automatic": _headings = [range(1, _h + 1), range(1, _w + 1)] else: h1, h2 = headings if h1 == "automatic": h1 = range(1, _h + 1) if h2 == "automatic": h2 = range(1, _w + 1) _headings = [h1, h2] allow = ('l', 'r', 'c') alignments = kwarg.get("alignments", "l") def _std_align(a): a = a.strip().lower() if len(a) > 1: return {'left': 'l', 'right': 'r', 'center': 'c'}.get(a, a) else: return {'<': 'l', '>': 'r', '^': 'c'}.get(a, a) std_align = _std_align(alignments) if std_align in allow: _alignments = [std_align] * _w else: _alignments = [] for a in alignments: std_align = _std_align(a) _alignments.append(std_align) if std_align not in ('l', 'r', 'c'): raise ValueError('alignment "%s" unrecognized' % alignments) if _headings[0] and len(_alignments) == _w + 1: _head_align = _alignments[0] _alignments = _alignments[1:] else: _head_align = 'r' if len(_alignments) != _w: raise ValueError( 'wrong number of alignments: expected %s but got %s' % (_w, len(_alignments))) _column_formats = kwarg.get("formats", [None] * _w) _wipe_zeros = kwarg.get("wipe_zeros", True) self._w = _w self._h = _h self._lines = _lines self._headings = _headings self._head_align = _head_align self._alignments = _alignments self._column_formats = _column_formats self._wipe_zeros = _wipe_zeros
def rsolve_ratio(coeffs, f, n, **hints): """ Given linear recurrence operator `\operatorname{L}` of order `k` with polynomial coefficients and inhomogeneous equation `\operatorname{L} y = f`, where `f` is a polynomial, we seek for all rational solutions over field `K` of characteristic zero. This procedure accepts only polynomials, however if you are interested in solving recurrence with rational coefficients then use ``rsolve`` which will pre-process the given equation and run this procedure with polynomial arguments. The algorithm performs two basic steps: (1) Compute polynomial `v(n)` which can be used as universal denominator of any rational solution of equation `\operatorname{L} y = f`. (2) Construct new linear difference equation by substitution `y(n) = u(n)/v(n)` and solve it for `u(n)` finding all its polynomial solutions. Return ``None`` if none were found. Algorithm implemented here is a revised version of the original Abramov's algorithm, developed in 1989. The new approach is much simpler to implement and has better overall efficiency. This method can be easily adapted to q-difference equations case. Besides finding rational solutions alone, this functions is an important part of Hyper algorithm were it is used to find particular solution of inhomogeneous part of a recurrence. Examples ======== >>> from sympy.abc import x >>> from sympy.solvers.recurr import rsolve_ratio >>> rsolve_ratio([-2*x**3 + x**2 + 2*x - 1, 2*x**3 + x**2 - 6*x, ... - 2*x**3 - 11*x**2 - 18*x - 9, 2*x**3 + 13*x**2 + 22*x + 8], 0, x) C2*(2*x - 3)/(2*(x**2 - 1)) References ========== .. [1] S. A. Abramov, Rational solutions of linear difference and q-difference equations with polynomial coefficients, in: T. Levelt, ed., Proc. ISSAC '95, ACM Press, New York, 1995, 285-289 See Also ======== rsolve_hyper """ f = sympify(f) if not f.is_polynomial(n): return None coeffs = list(map(sympify, coeffs)) r = len(coeffs) - 1 A, B = coeffs[r], coeffs[0] A = A.subs(n, n - r).expand() h = Dummy('h') res = resultant(A, B.subs(n, n + h), n) if not res.is_polynomial(h): p, q = res.as_numer_denom() res = quo(p, q, h) nni_roots = list(roots(res, h, filter='Z', predicate=lambda r: r >= 0).keys()) if not nni_roots: return rsolve_poly(coeffs, f, n, **hints) else: C, numers = S.One, [S.Zero]*(r + 1) for i in range(int(max(nni_roots)), -1, -1): d = gcd(A, B.subs(n, n + i), n) A = quo(A, d, n) B = quo(B, d.subs(n, n - i), n) C *= Mul(*[ d.subs(n, n - j) for j in range(0, i + 1) ]) denoms = [ C.subs(n, n + i) for i in range(0, r + 1) ] for i in range(0, r + 1): g = gcd(coeffs[i], denoms[i], n) numers[i] = quo(coeffs[i], g, n) denoms[i] = quo(denoms[i], g, n) for i in range(0, r + 1): numers[i] *= Mul(*(denoms[:i] + denoms[i + 1:])) result = rsolve_poly(numers, f * Mul(*denoms), n, **hints) if result is not None: if hints.get('symbols', False): return (simplify(result[0] / C), result[1]) else: return simplify(result / C) else: return None
def rsolve_poly(coeffs, f, n, **hints): """ Given linear recurrence operator `\operatorname{L}` of order `k` with polynomial coefficients and inhomogeneous equation `\operatorname{L} y = f`, where `f` is a polynomial, we seek for all polynomial solutions over field `K` of characteristic zero. The algorithm performs two basic steps: (1) Compute degree `N` of the general polynomial solution. (2) Find all polynomials of degree `N` or less of `\operatorname{L} y = f`. There are two methods for computing the polynomial solutions. If the degree bound is relatively small, i.e. it's smaller than or equal to the order of the recurrence, then naive method of undetermined coefficients is being used. This gives system of algebraic equations with `N+1` unknowns. In the other case, the algorithm performs transformation of the initial equation to an equivalent one, for which the system of algebraic equations has only `r` indeterminates. This method is quite sophisticated (in comparison with the naive one) and was invented together by Abramov, Bronstein and Petkovsek. It is possible to generalize the algorithm implemented here to the case of linear q-difference and differential equations. Lets say that we would like to compute `m`-th Bernoulli polynomial up to a constant. For this we can use `b(n+1) - b(n) = m n^{m-1}` recurrence, which has solution `b(n) = B_m + C`. For example: >>> from sympy import Symbol, rsolve_poly >>> n = Symbol('n', integer=True) >>> rsolve_poly([-1, 1], 4*n**3, n) C0 + n**4 - 2*n**3 + n**2 References ========== .. [1] S. A. Abramov, M. Bronstein and M. Petkovsek, On polynomial solutions of linear operator equations, in: T. Levelt, ed., Proc. ISSAC '95, ACM Press, New York, 1995, 290-296. .. [2] M. Petkovsek, Hypergeometric solutions of linear recurrences with polynomial coefficients, J. Symbolic Computation, 14 (1992), 243-264. .. [3] M. Petkovsek, H. S. Wilf, D. Zeilberger, A = B, 1996. """ f = sympify(f) if not f.is_polynomial(n): return None homogeneous = f.is_zero r = len(coeffs) - 1 coeffs = [ Poly(coeff, n) for coeff in coeffs ] polys = [ Poly(0, n) ] * (r + 1) terms = [ (S.Zero, S.NegativeInfinity) ] *(r + 1) for i in range(0, r + 1): for j in range(i, r + 1): polys[i] += coeffs[j]*binomial(j, i) if not polys[i].is_zero: (exp,), coeff = polys[i].LT() terms[i] = (coeff, exp) d = b = terms[0][1] for i in range(1, r + 1): if terms[i][1] > d: d = terms[i][1] if terms[i][1] - i > b: b = terms[i][1] - i d, b = int(d), int(b) x = Dummy('x') degree_poly = S.Zero for i in range(0, r + 1): if terms[i][1] - i == b: degree_poly += terms[i][0]*FallingFactorial(x, i) nni_roots = list(roots(degree_poly, x, filter='Z', predicate=lambda r: r >= 0).keys()) if nni_roots: N = [max(nni_roots)] else: N = [] if homogeneous: N += [-b - 1] else: N += [f.as_poly(n).degree() - b, -b - 1] N = int(max(N)) if N < 0: if homogeneous: if hints.get('symbols', False): return (S.Zero, []) else: return S.Zero else: return None if N <= r: C = [] y = E = S.Zero for i in range(0, N + 1): C.append(Symbol('C' + str(i))) y += C[i] * n**i for i in range(0, r + 1): E += coeffs[i].as_expr()*y.subs(n, n + i) solutions = solve_undetermined_coeffs(E - f, C, n) if solutions is not None: C = [ c for c in C if (c not in solutions) ] result = y.subs(solutions) else: return None # TBD else: A = r U = N + A + b + 1 nni_roots = list(roots(polys[r], filter='Z', predicate=lambda r: r >= 0).keys()) if nni_roots != []: a = max(nni_roots) + 1 else: a = S.Zero def _zero_vector(k): return [S.Zero] * k def _one_vector(k): return [S.One] * k def _delta(p, k): B = S.One D = p.subs(n, a + k) for i in range(1, k + 1): B *= -Rational(k - i + 1, i) D += B * p.subs(n, a + k - i) return D alpha = {} for i in range(-A, d + 1): I = _one_vector(d + 1) for k in range(1, d + 1): I[k] = I[k - 1] * (x + i - k + 1)/k alpha[i] = S.Zero for j in range(0, A + 1): for k in range(0, d + 1): B = binomial(k, i + j) D = _delta(polys[j].as_expr(), k) alpha[i] += I[k]*B*D V = Matrix(U, A, lambda i, j: int(i == j)) if homogeneous: for i in range(A, U): v = _zero_vector(A) for k in range(1, A + b + 1): if i - k < 0: break B = alpha[k - A].subs(x, i - k) for j in range(0, A): v[j] += B * V[i - k, j] denom = alpha[-A].subs(x, i) for j in range(0, A): V[i, j] = -v[j] / denom else: G = _zero_vector(U) for i in range(A, U): v = _zero_vector(A) g = S.Zero for k in range(1, A + b + 1): if i - k < 0: break B = alpha[k - A].subs(x, i - k) for j in range(0, A): v[j] += B * V[i - k, j] g += B * G[i - k] denom = alpha[-A].subs(x, i) for j in range(0, A): V[i, j] = -v[j] / denom G[i] = (_delta(f, i - A) - g) / denom P, Q = _one_vector(U), _zero_vector(A) for i in range(1, U): P[i] = (P[i - 1] * (n - a - i + 1)/i).expand() for i in range(0, A): Q[i] = Add(*[ (v*p).expand() for v, p in zip(V[:, i], P) ]) if not homogeneous: h = Add(*[ (g*p).expand() for g, p in zip(G, P) ]) C = [ Symbol('C' + str(i)) for i in range(0, A) ] g = lambda i: Add(*[ c*_delta(q, i) for c, q in zip(C, Q) ]) if homogeneous: E = [ g(i) for i in range(N + 1, U) ] else: E = [ g(i) + _delta(h, i) for i in range(N + 1, U) ] if E != []: solutions = solve(E, *C) if not solutions: if homogeneous: if hints.get('symbols', False): return (S.Zero, []) else: return S.Zero else: return None else: solutions = {} if homogeneous: result = S.Zero else: result = h for c, q in list(zip(C, Q)): if c in solutions: s = solutions[c]*q C.remove(c) else: s = c*q result += s.expand() if hints.get('symbols', False): return (result, C) else: return result
SSUP = lambda symb: U('SUPERSCRIPT %s' % symb_2txt[symb]) sub = {} # symb -> subscript symbol sup = {} # symb -> superscript symbol # latin subscripts for l in 'aeioruvxhklmnpst': sub[l] = LSUB(l) for l in 'in': sup[l] = LSUP(l) for gl in ['beta', 'gamma', 'rho', 'phi', 'chi']: sub[gl] = GSUB(gl) for d in [str(i) for i in range(10)]: sub[d] = DSUB(d) sup[d] = DSUP(d) for s in '+-=()': sub[s] = SSUB(s) sup[s] = SSUP(s) # Variable modifiers # TODO: Is it worth trying to handle faces with, e.g., 'MATHEMATICAL BOLD CAPITAL A'? # TODO: Make brackets adjust to height of contents modifier_dict = { # Accents 'mathring': lambda s: s + u('\N{COMBINING RING ABOVE}'), 'ddddot':
def rsolve_hyper(coeffs, f, n, **hints): """ Given linear recurrence operator `\operatorname{L}` of order `k` with polynomial coefficients and inhomogeneous equation `\operatorname{L} y = f` we seek for all hypergeometric solutions over field `K` of characteristic zero. The inhomogeneous part can be either hypergeometric or a sum of a fixed number of pairwise dissimilar hypergeometric terms. The algorithm performs three basic steps: (1) Group together similar hypergeometric terms in the inhomogeneous part of `\operatorname{L} y = f`, and find particular solution using Abramov's algorithm. (2) Compute generating set of `\operatorname{L}` and find basis in it, so that all solutions are linearly independent. (3) Form final solution with the number of arbitrary constants equal to dimension of basis of `\operatorname{L}`. Term `a(n)` is hypergeometric if it is annihilated by first order linear difference equations with polynomial coefficients or, in simpler words, if consecutive term ratio is a rational function. The output of this procedure is a linear combination of fixed number of hypergeometric terms. However the underlying method can generate larger class of solutions - D'Alembertian terms. Note also that this method not only computes the kernel of the inhomogeneous equation, but also reduces in to a basis so that solutions generated by this procedure are linearly independent Examples ======== >>> from sympy.solvers import rsolve_hyper >>> from sympy.abc import x >>> rsolve_hyper([-1, -1, 1], 0, x) C0*(1/2 + sqrt(5)/2)**x + C1*(-sqrt(5)/2 + 1/2)**x >>> rsolve_hyper([-1, 1], 1 + x, x) C0 + x*(x + 1)/2 References ========== .. [1] M. Petkovsek, Hypergeometric solutions of linear recurrences with polynomial coefficients, J. Symbolic Computation, 14 (1992), 243-264. .. [2] M. Petkovsek, H. S. Wilf, D. Zeilberger, A = B, 1996. """ coeffs = list(map(sympify, coeffs)) f = sympify(f) r, kernel, symbols = len(coeffs) - 1, [], set() if not f.is_zero: if f.is_Add: similar = {} for g in f.expand().args: if not g.is_hypergeometric(n): return None for h in similar.keys(): if hypersimilar(g, h, n): similar[h] += g break else: similar[g] = S.Zero inhomogeneous = [] for g, h in similar.items(): inhomogeneous.append(g + h) elif f.is_hypergeometric(n): inhomogeneous = [f] else: return None for i, g in enumerate(inhomogeneous): coeff, polys = S.One, coeffs[:] denoms = [ S.One ] * (r + 1) s = hypersimp(g, n) for j in range(1, r + 1): coeff *= s.subs(n, n + j - 1) p, q = coeff.as_numer_denom() polys[j] *= p denoms[j] = q for j in range(0, r + 1): polys[j] *= Mul(*(denoms[:j] + denoms[j + 1:])) R = rsolve_poly(polys, Mul(*denoms), n) if not (R is None or R is S.Zero): inhomogeneous[i] *= R else: return None result = Add(*inhomogeneous) else: result = S.Zero Z = Dummy('Z') p, q = coeffs[0], coeffs[r].subs(n, n - r + 1) p_factors = [ z for z in roots(p, n).keys() ] q_factors = [ z for z in roots(q, n).keys() ] factors = [ (S.One, S.One) ] for p in p_factors: for q in q_factors: if p.is_integer and q.is_integer and p <= q: continue else: factors += [(n - p, n - q)] p = [ (n - p, S.One) for p in p_factors ] q = [ (S.One, n - q) for q in q_factors ] factors = p + factors + q for A, B in factors: polys, degrees = [], [] D = A*B.subs(n, n + r - 1) for i in range(0, r + 1): a = Mul(*[ A.subs(n, n + j) for j in range(0, i) ]) b = Mul(*[ B.subs(n, n + j) for j in range(i, r) ]) poly = quo(coeffs[i]*a*b, D, n) polys.append(poly.as_poly(n)) if not poly.is_zero: degrees.append(polys[i].degree()) if degrees: d, poly = max(degrees), S.Zero else: return None for i in range(0, r + 1): coeff = polys[i].nth(d) if coeff is not S.Zero: poly += coeff * Z**i for z in roots(poly, Z).keys(): if z.is_zero: continue (C, s) = rsolve_poly([ polys[i]*z**i for i in range(r + 1) ], 0, n, symbols=True) if C is not None and C is not S.Zero: symbols |= set(s) ratio = z * A * C.subs(n, n + 1) / B / C ratio = simplify(ratio) # If there is a nonnegative root in the denominator of the ratio, # this indicates that the term y(n_root) is zero, and one should # start the product with the term y(n_root + 1). n0 = 0 for n_root in roots(ratio.as_numer_denom()[1], n).keys(): if n_root.has(I): return None elif (n0 < (n_root + 1)) == True: n0 = n_root + 1 K = product(ratio, (n, n0, n - 1)) if K.has(factorial, FallingFactorial, RisingFactorial): K = simplify(K) if casoratian(kernel + [K], n, zero=False) != 0: kernel.append(K) kernel.sort(key=default_sort_key) sk = list(zip(numbered_symbols('C'), kernel)) if sk: for C, ker in sk: result += C * ker else: return None if hints.get('symbols', False): symbols |= {s for s, k in sk} return (result, list(symbols)) else: return result
def canonicalize(g, dummies, msym, *v): """ canonicalize tensor formed by tensors Parameters ========== g : permutation representing the tensor dummies : list representing the dummy indices it can be a list of dummy indices of the same type or a list of lists of dummy indices, one list for each type of index; the dummy indices must come after the free indices, and put in order contravariant, covariant [d0, -d0, d1,-d1,...] msym : symmetry of the metric(s) it can be an integer or a list; in the first case it is the symmetry of the dummy index metric; in the second case it is the list of the symmetries of the index metric for each type v : list, (base_i, gens_i, n_i, sym_i) for tensors of type `i` base_i, gens_i : BSGS for tensors of this type. The BSGS should have minimal base under lexicographic ordering; if not, an attempt is made do get the minimal BSGS; in case of failure, canonicalize_naive is used, which is much slower. n_i : number of tensors of type `i`. sym_i : symmetry under exchange of component tensors of type `i`. Both for msym and sym_i the cases are * None no symmetry * 0 commuting * 1 anticommuting Returns ======= 0 if the tensor is zero, else return the array form of the permutation representing the canonical form of the tensor. Algorithm ========= First one uses canonical_free to get the minimum tensor under lexicographic order, using only the slot symmetries. If the component tensors have not minimal BSGS, it is attempted to find it; if the attempt fails canonicalize_naive is used instead. Compute the residual slot symmetry keeping fixed the free indices using tensor_gens(base, gens, list_free_indices, sym). Reduce the problem eliminating the free indices. Then use double_coset_can_rep and lift back the result reintroducing the free indices. Examples ======== one type of index with commuting metric; `A_{a b}` and `B_{a b}` antisymmetric and commuting `T = A_{d0 d1} * B^{d0}{}_{d2} * B^{d2 d1}` `ord = [d0,-d0,d1,-d1,d2,-d2]` order of the indices g = [1, 3, 0, 5, 4, 2, 6, 7] `T_c = 0` >>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize, bsgs_direct_product >>> from sympy.combinatorics import Permutation >>> base2a, gens2a = get_symmetric_group_sgs(2, 1) >>> t0 = (base2a, gens2a, 1, 0) >>> t1 = (base2a, gens2a, 2, 0) >>> g = Permutation([1, 3, 0, 5, 4, 2, 6, 7]) >>> canonicalize(g, range(6), 0, t0, t1) 0 same as above, but with `B_{a b}` anticommuting `T_c = -A^{d0 d1} * B_{d0}{}^{d2} * B_{d1 d2}` can = [0,2,1,4,3,5,7,6] >>> t1 = (base2a, gens2a, 2, 1) >>> canonicalize(g, range(6), 0, t0, t1) [0, 2, 1, 4, 3, 5, 7, 6] two types of indices `[a,b,c,d,e,f]` and `[m,n]`, in this order, both with commuting metric `f^{a b c}` antisymmetric, commuting `A_{m a}` no symmetry, commuting `T = f^c{}_{d a} * f^f{}_{e b} * A_m{}^d * A^{m b} * A_n{}^a * A^{n e}` ord = [c,f,a,-a,b,-b,d,-d,e,-e,m,-m,n,-n] g = [0,7,3, 1,9,5, 11,6, 10,4, 13,2, 12,8, 14,15] The canonical tensor is `T_c = -f^{c a b} * f^{f d e} * A^m{}_a * A_{m d} * A^n{}_b * A_{n e}` can = [0,2,4, 1,6,8, 10,3, 11,7, 12,5, 13,9, 15,14] >>> base_f, gens_f = get_symmetric_group_sgs(3, 1) >>> base1, gens1 = get_symmetric_group_sgs(1) >>> base_A, gens_A = bsgs_direct_product(base1, gens1, base1, gens1) >>> t0 = (base_f, gens_f, 2, 0) >>> t1 = (base_A, gens_A, 4, 0) >>> dummies = [range(2, 10), range(10, 14)] >>> g = Permutation([0, 7, 3, 1, 9, 5, 11, 6, 10, 4, 13, 2, 12, 8, 14, 15]) >>> canonicalize(g, dummies, [0, 0], t0, t1) [0, 2, 4, 1, 6, 8, 10, 3, 11, 7, 12, 5, 13, 9, 15, 14] """ from sympy.combinatorics.testutil import canonicalize_naive if not isinstance(msym, list): if not msym in [0, 1, None]: raise ValueError('msym must be 0, 1 or None') num_types = 1 else: num_types = len(msym) if not all(msymx in [0, 1, None] for msymx in msym): raise ValueError('msym entries must be 0, 1 or None') if len(dummies) != num_types: raise ValueError( 'dummies and msym must have the same number of elements') size = g.size num_tensors = 0 v1 = [] for i in range(len(v)): base_i, gens_i, n_i, sym_i = v[i] # check that the BSGS is minimal; # this property is used in double_coset_can_rep; # if it is not minimal use canonicalize_naive if not _is_minimal_bsgs(base_i, gens_i): mbsgs = get_minimal_bsgs(base_i, gens_i) if not mbsgs: can = canonicalize_naive(g, dummies, msym, *v) return can base_i, gens_i = mbsgs v1.append((base_i, gens_i, [[]] * n_i, sym_i)) num_tensors += n_i if num_types == 1 and not isinstance(msym, list): dummies = [dummies] msym = [msym] flat_dummies = [] for dumx in dummies: flat_dummies.extend(dumx) if flat_dummies and flat_dummies != list( range(flat_dummies[0], flat_dummies[-1] + 1)): raise ValueError('dummies is not valid') # slot symmetry of the tensor size1, sbase, sgens = gens_products(*v1) if size != size1: raise ValueError('g has size %d, generators have size %d' % (size, size1)) free = [i for i in range(size - 2) if i not in flat_dummies] num_free = len(free) # g1 minimal tensor under slot symmetry g1 = canonical_free(sbase, sgens, g, num_free) if not flat_dummies: return g1 # save the sign of g1 sign = 0 if g1[-1] == size - 1 else 1 # the free indices are kept fixed. # Determine free_i, the list of slots of tensors which are fixed # since they are occupied by free indices, which are fixed. start = 0 for i in range(len(v)): free_i = [] base_i, gens_i, n_i, sym_i = v[i] len_tens = gens_i[0].size - 2 # for each component tensor get a list od fixed islots for j in range(n_i): # get the elements corresponding to the component tensor h = g1[start:(start + len_tens)] fr = [] # get the positions of the fixed elements in h for k in free: if k in h: fr.append(h.index(k)) free_i.append(fr) start += len_tens v1[i] = (base_i, gens_i, free_i, sym_i) # BSGS of the tensor with fixed free indices # if tensor_gens fails in gens_product, use canonicalize_naive size, sbase, sgens = gens_products(*v1) # reduce the permutations getting rid of the free indices pos_dummies = [g1.index(x) for x in flat_dummies] pos_free = [g1.index(x) for x in range(num_free)] size_red = size - num_free g1_red = [x - num_free for x in g1 if x in flat_dummies] if sign: g1_red.extend([size_red - 1, size_red - 2]) else: g1_red.extend([size_red - 2, size_red - 1]) map_slots = _get_map_slots(size, pos_free) sbase_red = [map_slots[i] for i in sbase if i not in pos_free] sgens_red = [ _af_new([map_slots[i] for i in y._array_form if i not in pos_free]) for y in sgens ] dummies_red = [[x - num_free for x in y] for y in dummies] transv_red = get_transversals(sbase_red, sgens_red) g1_red = _af_new(g1_red) g2 = double_coset_can_rep(dummies_red, msym, sbase_red, sgens_red, transv_red, g1_red) if g2 == 0: return 0 # lift to the case with the free indices g3 = _lift_sgens(size, pos_free, free, g2) return g3
def test_norm(): # Maximum "n" which is tested: n_max = 2 # it works, but is slow, for n_max > 2 for n in range(n_max + 1): for l in range(n): assert integrate(R_nl(n, l, r)**2 * r**2, (r, 0, oo)) == 1
def double_coset_can_rep(dummies, sym, b_S, sgens, S_transversals, g): """ Butler-Portugal algorithm for tensor canonicalization with dummy indices dummies list of lists of dummy indices, one list for each type of index; the dummy indices are put in order contravariant, covariant [d0, -d0, d1, -d1, ...]. sym list of the symmetries of the index metric for each type. possible symmetries of the metrics * 0 symmetric * 1 antisymmetric * None no symmetry b_S base of a minimal slot symmetry BSGS. sgens generators of the slot symmetry BSGS. S_transversals transversals for the slot BSGS. g permutation representing the tensor. Return 0 if the tensor is zero, else return the array form of the permutation representing the canonical form of the tensor. A tensor with dummy indices can be represented in a number of equivalent ways which typically grows exponentially with the number of indices. To be able to establish if two tensors with many indices are equal becomes computationally very slow in absence of an efficient algorithm. The Butler-Portugal algorithm [3] is an efficient algorithm to put tensors in canonical form, solving the above problem. Portugal observed that a tensor can be represented by a permutation, and that the class of tensors equivalent to it under slot and dummy symmetries is equivalent to the double coset `D*g*S` (Note: in this documentation we use the conventions for multiplication of permutations p, q with (p*q)(i) = p[q[i]] which is opposite to the one used in the Permutation class) Using the algorithm by Butler to find a representative of the double coset one can find a canonical form for the tensor. To see this correspondence, let `g` be a permutation in array form; a tensor with indices `ind` (the indices including both the contravariant and the covariant ones) can be written as `t = T(ind[g[0],..., ind[g[n-1]])`, where `n= len(ind)`; `g` has size `n + 2`, the last two indices for the sign of the tensor (trick introduced in [4]). A slot symmetry transformation `s` is a permutation acting on the slots `t -> T(ind[(g*s)[0]],..., ind[(g*s)[n-1]])` A dummy symmetry transformation acts on `ind` `t -> T(ind[(d*g)[0]],..., ind[(d*g)[n-1]])` Being interested only in the transformations of the tensor under these symmetries, one can represent the tensor by `g`, which transforms as `g -> d*g*s`, so it belongs to the coset `D*g*S`. Let us explain the conventions by an example. Given a tensor `T^{d3 d2 d1}{}_{d1 d2 d3}` with the slot symmetries `T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}` `T^{a0 a1 a2 a3 a4 a5} = -T^{a4 a1 a2 a3 a0 a5}` and symmetric metric, find the tensor equivalent to it which is the lowest under the ordering of indices: lexicographic ordering `d1, d2, d3` then and contravariant index before covariant index; that is the canonical form of the tensor. The canonical form is `-T^{d1 d2 d3}{}_{d1 d2 d3}` obtained using `T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`. To convert this problem in the input for this function, use the following labelling of the index names (- for covariant for short) `d1, -d1, d2, -d2, d3, -d3` `T^{d3 d2 d1}{}_{d1 d2 d3}` corresponds to `g = [4, 2, 0, 1, 3, 5, 6, 7]` where the last two indices are for the sign `sgens = [Permutation(0, 2)(6, 7), Permutation(0, 4)(6, 7)]` sgens[0] is the slot symmetry `-(0, 2)` `T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}` sgens[1] is the slot symmetry `-(0, 4)` `T^{a0 a1 a2 a3 a4 a5} = -T^{a4 a1 a2 a3 a0 a5}` The dummy symmetry group D is generated by the strong base generators `[(0, 1), (2, 3), (4, 5), (0, 1)(2, 3),(2, 3)(4, 5)]` The dummy symmetry acts from the left `d = [1, 0, 2, 3, 4, 5, 6, 7]` exchange `d1 -> -d1` `T^{d3 d2 d1}{}_{d1 d2 d3} == T^{d3 d2}{}_{d1}{}^{d1}{}_{d2 d3}` `g=[4, 2, 0, 1, 3, 5, 6, 7] -> [4, 2, 1, 0, 3, 5, 6, 7] = _af_rmul(d, g)` which differs from `_af_rmul(g, d)`. The slot symmetry acts from the right `s = [2, 1, 0, 3, 4, 5, 7, 6]` exchanges slots 0 and 2 and changes sign `T^{d3 d2 d1}{}_{d1 d2 d3} == -T^{d1 d2 d3}{}_{d1 d2 d3}` `g=[4,2,0,1,3,5,6,7] -> [0, 2, 4, 1, 3, 5, 7, 6] = _af_rmul(g, s)` Example in which the tensor is zero, same slot symmetries as above: `T^{d3}{}_{d1,d2}{}^{d1}{}_{d3}{}^{d2}` `= -T^{d3}{}_{d1,d3}{}^{d1}{}_{d2}{}^{d2}` under slot symmetry `-(2,4)`; `= T_{d3 d1}{}^{d3}{}^{d1}{}_{d2}{}^{d2}` under slot symmetry `-(0,2)`; `= T^{d3}{}_{d1 d3}{}^{d1}{}_{d2}{}^{d2}` symmetric metric; `= 0` since two of these lines have tensors differ only for the sign. The double coset D*g*S consists of permutations `h = d*g*s` corresponding to equivalent tensors; if there are two `h` which are the same apart from the sign, return zero; otherwise choose as representative the tensor with indices ordered lexicographically according to `[d1, -d1, d2, -d2, d3, -d3]` that is `rep = min(D*g*S) = min([d*g*s for d in D for s in S])` The indices are fixed one by one; first choose the lowest index for slot 0, then the lowest remaining index for slot 1, etc. Doing this one obtains a chain of stabilizers `S -> S_{b0} -> S_{b0,b1} -> ...` and `D -> D_{p0} -> D_{p0,p1} -> ...` where `[b0, b1, ...] = range(b)` is a base of the symmetric group; the strong base `b_S` of S is an ordered sublist of it; therefore it is sufficient to compute once the strong base generators of S using the Schreier-Sims algorithm; the stabilizers of the strong base generators are the strong base generators of the stabilizer subgroup. `dbase = [p0, p1, ...]` is not in general in lexicographic order, so that one must recompute the strong base generators each time; however this is trivial, there is no need to use the Schreier-Sims algorithm for D. The algorithm keeps a TAB of elements `(s_i, d_i, h_i)` where `h_i = d_i*g*s_i` satisfying `h_i[j] = p_j` for `0 <= j < i` starting from `s_0 = id, d_0 = id, h_0 = g`. The equations `h_0[0] = p_0, h_1[1] = p_1,...` are solved in this order, choosing each time the lowest possible value of p_i For `j < i` `d_i*g*s_i*S_{b_0,...,b_{i-1}}*b_j = D_{p_0,...,p_{i-1}}*p_j` so that for dx in `D_{p_0,...,p_{i-1}}` and sx in `S_{base[0],...,base[i-1]}` one has `dx*d_i*g*s_i*sx*b_j = p_j` Search for dx, sx such that this equation holds for `j = i`; it can be written as `s_i*sx*b_j = J, dx*d_i*g*J = p_j` `sx*b_j = s_i**-1*J; sx = trace(s_i**-1, S_{b_0,...,b_{i-1}})` `dx**-1*p_j = d_i*g*J; dx = trace(d_i*g*J, D_{p_0,...,p_{i-1}})` `s_{i+1} = s_i*trace(s_i**-1*J, S_{b_0,...,b_{i-1}})` `d_{i+1} = trace(d_i*g*J, D_{p_0,...,p_{i-1}})**-1*d_i` `h_{i+1}*b_i = d_{i+1}*g*s_{i+1}*b_i = p_i` `h_n*b_j = p_j` for all j, so that `h_n` is the solution. Add the found `(s, d, h)` to TAB1. At the end of the iteration sort TAB1 with respect to the `h`; if there are two consecutive `h` in TAB1 which differ only for the sign, the tensor is zero, so return 0; if there are two consecutive `h` which are equal, keep only one. Then stabilize the slot generators under `i` and the dummy generators under `p_i`. Assign `TAB = TAB1` at the end of the iteration step. At the end `TAB` contains a unique `(s, d, h)`, since all the slots of the tensor `h` have been fixed to have the minimum value according to the symmetries. The algorithm returns `h`. It is important that the slot BSGS has lexicographic minimal base, otherwise there is an `i` which does not belong to the slot base for which `p_i` is fixed by the dummy symmetry only, while `i` is not invariant from the slot stabilizer, so `p_i` is not in general the minimal value. This algorithm differs slightly from the original algorithm [3]: the canonical form is minimal lexicographically, and the BSGS has minimal base under lexicographic order. Equal tensors `h` are eliminated from TAB. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.tensor_can import double_coset_can_rep, get_transversals >>> gens = [Permutation(x) for x in [[2, 1, 0, 3, 4, 5, 7, 6], [4, 1, 2, 3, 0, 5, 7, 6]]] >>> base = [0, 2] >>> g = Permutation([4, 2, 0, 1, 3, 5, 6, 7]) >>> transversals = get_transversals(base, gens) >>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g) [0, 1, 2, 3, 4, 5, 7, 6] >>> g = Permutation([4, 1, 3, 0, 5, 2, 6, 7]) >>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g) 0 """ size = g.size g = g.array_form num_dummies = size - 2 indices = list(range(num_dummies)) all_metrics_with_sym = all([_ is not None for _ in sym]) num_types = len(sym) dumx = dummies[:] dumx_flat = [] for dx in dumx: dumx_flat.extend(dx) b_S = b_S[:] sgensx = [h._array_form for h in sgens] if b_S: S_transversals = transversal2coset(size, b_S, S_transversals) # strong generating set for D dsgsx = [] for i in range(num_types): dsgsx.extend(dummy_sgs(dumx[i], sym[i], num_dummies)) ginv = _af_invert(g) idn = list(range(size)) # TAB = list of entries (s, d, h) where h = _af_rmuln(d,g,s) # for short, in the following d*g*s means _af_rmuln(d,g,s) TAB = [(idn, idn, g)] for i in range(size - 2): b = i testb = b in b_S and sgensx if testb: sgensx1 = [_af_new(_) for _ in sgensx] deltab = _orbit(size, sgensx1, b) else: deltab = set([b]) # p1 = min(IMAGES) = min(Union D_p*h*deltab for h in TAB) if all_metrics_with_sym: md = _min_dummies(dumx, sym, indices) else: md = [ min(_orbit(size, [_af_new(ddx) for ddx in dsgsx], ii)) for ii in range(size - 2) ] p_i = min([min([md[h[x]] for x in deltab]) for s, d, h in TAB]) dsgsx1 = [_af_new(_) for _ in dsgsx] Dxtrav = _orbit_transversal(size, dsgsx1, p_i, False, af=True) \ if dsgsx else None if Dxtrav: Dxtrav = [_af_invert(x) for x in Dxtrav] # compute the orbit of p_i for ii in range(num_types): if p_i in dumx[ii]: # the orbit is made by all the indices in dum[ii] if sym[ii] is not None: deltap = dumx[ii] else: # the orbit is made by all the even indices if p_i # is even, by all the odd indices if p_i is odd p_i_index = dumx[ii].index(p_i) % 2 deltap = dumx[ii][p_i_index::2] break else: deltap = [p_i] TAB1 = [] nTAB = len(TAB) while TAB: s, d, h = TAB.pop() if min([md[h[x]] for x in deltab]) != p_i: continue deltab1 = [x for x in deltab if md[h[x]] == p_i] # NEXT = s*deltab1 intersection (d*g)**-1*deltap dg = _af_rmul(d, g) dginv = _af_invert(dg) sdeltab = [s[x] for x in deltab1] gdeltap = [dginv[x] for x in deltap] NEXT = [x for x in sdeltab if x in gdeltap] # d, s satisfy # d*g*s*base[i-1] = p_{i-1}; using the stabilizers # d*g*s*S_{base[0],...,base[i-1]}*base[i-1] = # D_{p_0,...,p_{i-1}}*p_{i-1} # so that to find d1, s1 satisfying d1*g*s1*b = p_i # one can look for dx in D_{p_0,...,p_{i-1}} and # sx in S_{base[0],...,base[i-1]} # d1 = dx*d; s1 = s*sx # d1*g*s1*b = dx*d*g*s*sx*b = p_i for j in NEXT: if testb: # solve s1*b = j with s1 = s*sx for some element sx # of the stabilizer of ..., base[i-1] # sx*b = s**-1*j; sx = _trace_S(s, j,...) # s1 = s*trace_S(s**-1*j,...) s1 = _trace_S(s, j, b, S_transversals) if not s1: continue else: s1 = [s[ix] for ix in s1] else: s1 = s # assert s1[b] == j # invariant # solve d1*g*j = p_i with d1 = dx*d for some element dg # of the stabilizer of ..., p_{i-1} # dx**-1*p_i = d*g*j; dx**-1 = trace_D(d*g*j,...) # d1 = trace_D(d*g*j,...)**-1*d # to save an inversion in the inner loop; notice we did # Dxtrav = [perm_af_invert(x) for x in Dxtrav] out of the loop if Dxtrav: d1 = _trace_D(dg[j], p_i, Dxtrav) if not d1: continue else: if p_i != dg[j]: continue d1 = idn assert d1[dg[j]] == p_i # invariant d1 = [d1[ix] for ix in d] h1 = [d1[g[ix]] for ix in s1] # assert h1[b] == p_i # invariant TAB1.append((s1, d1, h1)) # if TAB contains equal permutations, keep only one of them; # if TAB contains equal permutations up to the sign, return 0 TAB1.sort(key=lambda x: x[-1]) nTAB1 = len(TAB1) prev = [0] * size while TAB1: s, d, h = TAB1.pop() if h[:-2] == prev[:-2]: if h[-1] != prev[-1]: return 0 else: TAB.append((s, d, h)) prev = h # stabilize the SGS sgensx = [h for h in sgensx if h[b] == b] if b in b_S: b_S.remove(b) _dumx_remove(dumx, dumx_flat, p_i) dsgsx = [] for i in range(num_types): dsgsx.extend(dummy_sgs(dumx[i], sym[i], num_dummies)) return TAB[0][-1]
def test_nC_nP_nT(): from sympy.utilities.iterables import ( multiset_permutations, multiset_combinations, multiset_partitions, partitions, subsets, permutations) from sympy.functions.combinatorial.numbers import ( nP, nC, nT, stirling, _multiset_histogram, _AOP_product) from sympy.combinatorics.permutations import Permutation from sympy.core.numbers import oo from random import choice c = string.ascii_lowercase for i in range(100): s = ''.join(choice(c) for i in range(7)) u = len(s) == len(set(s)) try: tot = 0 for i in range(8): check = nP(s, i) tot += check assert len(list(multiset_permutations(s, i))) == check if u: assert nP(len(s), i) == check assert nP(s) == tot except AssertionError: print(s, i, 'failed perm test') raise ValueError() for i in range(100): s = ''.join(choice(c) for i in range(7)) u = len(s) == len(set(s)) try: tot = 0 for i in range(8): check = nC(s, i) tot += check assert len(list(multiset_combinations(s, i))) == check if u: assert nC(len(s), i) == check assert nC(s) == tot if u: assert nC(len(s)) == tot except AssertionError: print(s, i, 'failed combo test') raise ValueError() for i in range(1, 10): tot = 0 for j in range(1, i + 2): check = nT(i, j) assert check.is_Integer tot += check assert sum(1 for p in partitions(i, j, size=True) if p[0] == j) == check assert nT(i) == tot for i in range(1, 10): tot = 0 for j in range(1, i + 2): check = nT(range(i), j) tot += check assert len(list(multiset_partitions(list(range(i)), j))) == check assert nT(range(i)) == tot for i in range(100): s = ''.join(choice(c) for i in range(7)) u = len(s) == len(set(s)) try: tot = 0 for i in range(1, 8): check = nT(s, i) tot += check assert len(list(multiset_partitions(s, i))) == check if u: assert nT(range(len(s)), i) == check if u: assert nT(range(len(s))) == tot assert nT(s) == tot except AssertionError: print(s, i, 'failed partition test') raise ValueError() # tests for Stirling numbers of the first kind that are not tested in the # above assert [stirling(9, i, kind=1) for i in range(11)] == [ 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0] perms = list(permutations(range(4))) assert [sum(1 for p in perms if Permutation(p).cycles == i) for i in range(5)] == [0, 6, 11, 6, 1] == [ stirling(4, i, kind=1) for i in range(5)] # http://oeis.org/A008275 assert [stirling(n, k, signed=1) for n in range(10) for k in range(1, n + 1)] == [ 1, -1, 1, 2, -3, 1, -6, 11, -6, 1, 24, -50, 35, -10, 1, -120, 274, -225, 85, -15, 1, 720, -1764, 1624, -735, 175, -21, 1, -5040, 13068, -13132, 6769, -1960, 322, -28, 1, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1] # https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind assert [stirling(n, k, kind=1) for n in range(10) for k in range(n+1)] == [ 1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35, 10, 1, 0, 120, 274, 225, 85, 15, 1, 0, 720, 1764, 1624, 735, 175, 21, 1, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1] # https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind assert [stirling(n, k, kind=2) for n in range(10) for k in range(n+1)] == [ 1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10, 1, 0, 1, 31, 90, 65, 15, 1, 0, 1, 63, 301, 350, 140, 21, 1, 0, 1, 127, 966, 1701, 1050, 266, 28, 1, 0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1] assert stirling(3, 4, kind=1) == stirling(3, 4, kind=1) == 0 raises(ValueError, lambda: stirling(-2, 2)) def delta(p): if len(p) == 1: return oo return min(abs(i[0] - i[1]) for i in subsets(p, 2)) parts = multiset_partitions(range(5), 3) d = 2 assert (sum(1 for p in parts if all(delta(i) >= d for i in p)) == stirling(5, 3, d=d) == 7) # other coverage tests assert nC('abb', 2) == nC('aab', 2) == 2 assert nP(3, 3, replacement=True) == nP('aabc', 3, replacement=True) == 27 assert nP(3, 4) == 0 assert nP('aabc', 5) == 0 assert nC(4, 2, replacement=True) == nC('abcdd', 2, replacement=True) == \ len(list(multiset_combinations('aabbccdd', 2))) == 10 assert nC('abcdd') == sum(nC('abcdd', i) for i in range(6)) == 24 assert nC(list('abcdd'), 4) == 4 assert nT('aaaa') == nT(4) == len(list(partitions(4))) == 5 assert nT('aaab') == len(list(multiset_partitions('aaab'))) == 7 assert nC('aabb'*3, 3) == 4 # aaa, bbb, abb, baa assert dict(_AOP_product((4,1,1,1))) == { 0: 1, 1: 4, 2: 7, 3: 8, 4: 8, 5: 7, 6: 4, 7: 1} # the following was the first t that showed a problem in a previous form of # the function, so it's not as random as it may appear t = (3, 9, 4, 6, 6, 5, 5, 2, 10, 4) assert sum(_AOP_product(t)[i] for i in range(55)) == 58212000 raises(ValueError, lambda: _multiset_histogram({1:'a'}))
class prettyForm(stringPict): """ Extension of the stringPict class that knows about basic math applications, optimizing double minus signs. "Binding" is interpreted as follows:: ATOM this is an atom: never needs to be parenthesized FUNC this is a function application: parenthesize if added (?) DIV this is a division: make wider division if divided POW this is a power: only parenthesize if exponent MUL this is a multiplication: parenthesize if powered ADD this is an addition: parenthesize if multiplied or powered NEG this is a negative number: optimize if added, parenthesize if multiplied or powered OPEN this is an open object: parenthesize if added, multiplied, or powered (example: Piecewise) """ ATOM, FUNC, DIV, POW, MUL, ADD, NEG, OPEN = range(8) def __init__(self, s, baseline=0, binding=0, unicode=None): """Initialize from stringPict and binding power.""" stringPict.__init__(self, s, baseline) self.binding = binding self.unicode = unicode or s # Note: code to handle subtraction is in _print_Add def __add__(self, *others): """Make a pretty addition. Addition of negative numbers is simplified. """ arg = self if arg.binding > prettyForm.NEG: arg = stringPict(*arg.parens()) result = [arg] for arg in others: #add parentheses for weak binders if arg.binding > prettyForm.NEG: arg = stringPict(*arg.parens()) #use existing minus sign if available if arg.binding != prettyForm.NEG: result.append(' + ') result.append(arg) return prettyForm(binding=prettyForm.ADD, *stringPict.next(*result)) def __div__(self, den, slashed=False): """Make a pretty division; stacked or slashed. """ if slashed: raise NotImplementedError("Can't do slashed fraction yet") num = self if num.binding == prettyForm.DIV: num = stringPict(*num.parens()) if den.binding == prettyForm.DIV: den = stringPict(*den.parens()) if num.binding == prettyForm.NEG: num = num.right(" ")[0] return prettyForm(binding=prettyForm.DIV, *stringPict.stack(num, stringPict.LINE, den)) def __truediv__(self, o): return self.__div__(o) def __mul__(self, *others): """Make a pretty multiplication. Parentheses are needed around +, - and neg. """ quantity = {'degree': u"\N{DEGREE SIGN}"} if len(others) == 0: return self # We aren't actually multiplying... So nothing to do here. args = self if args.binding > prettyForm.MUL: arg = stringPict(*args.parens()) result = [args] for arg in others: if arg.picture[0] not in quantity.values(): result.append(xsym('*')) #add parentheses for weak binders if arg.binding > prettyForm.MUL: arg = stringPict(*arg.parens()) result.append(arg) len_res = len(result) for i in range(len_res): if i < len_res - 1 and result[i] == '-1' and result[i + 1] == xsym( '*'): # substitute -1 by -, like in -1*x -> -x result.pop(i) result.pop(i) result.insert(i, '-') if result[0][0] == '-': # if there is a - sign in front of all # This test was failing to catch a prettyForm.__mul__(prettyForm("-1", 0, 6)) being negative bin = prettyForm.NEG if result[0] == '-': right = result[1] if right.picture[right.baseline][0] == '-': result[0] = '- ' else: bin = prettyForm.MUL return prettyForm(binding=bin, *stringPict.next(*result)) def __repr__(self): return "prettyForm(%r,%d,%d)" % ('\n'.join( self.picture), self.baseline, self.binding) def __pow__(self, b): """Make a pretty power. """ a = self use_inline_func_form = False if b.binding == prettyForm.POW: b = stringPict(*b.parens()) if a.binding > prettyForm.FUNC: a = stringPict(*a.parens()) elif a.binding == prettyForm.FUNC: # heuristic for when to use inline power if b.height() > 1: a = stringPict(*a.parens()) else: use_inline_func_form = True if use_inline_func_form: # 2 # sin + + (x) b.baseline = a.prettyFunc.baseline + b.height() func = stringPict(*a.prettyFunc.right(b)) return prettyForm(*func.right(a.prettyArgs)) else: # 2 <-- top # (x+y) <-- bot top = stringPict(*b.left(' ' * a.width())) bot = stringPict(*a.right(' ' * b.width())) return prettyForm(binding=prettyForm.POW, *bot.above(top)) simpleFunctions = ["sin", "cos", "tan"] @staticmethod def apply(function, *args): """Functions of one or more variables. """ if function in prettyForm.simpleFunctions: #simple function: use only space if possible assert len( args ) == 1, "Simple function %s must have 1 argument" % function arg = args[0].__pretty__() if arg.binding <= prettyForm.DIV: #optimization: no parentheses necessary return prettyForm(binding=prettyForm.FUNC, *arg.left(function + ' ')) argumentList = [] for arg in args: argumentList.append(',') argumentList.append(arg.__pretty__()) argumentList = stringPict(*stringPict.next(*argumentList[1:])) argumentList = stringPict(*argumentList.parens()) return prettyForm(binding=prettyForm.ATOM, *argumentList.left(function))
def canonical_free(base, gens, g, num_free): """ canonicalization of a tensor with respect to free indices choosing the minimum with respect to lexicographical ordering in the free indices ``base``, ``gens`` BSGS for slot permutation group ``g`` permutation representing the tensor ``num_free`` number of free indices The indices must be ordered with first the free indices see explanation in double_coset_can_rep The algorithm is a variation of the one given in [2]. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.tensor_can import canonical_free >>> gens = [[1, 0, 2, 3, 5, 4], [2, 3, 0, 1, 4, 5],[0, 1, 3, 2, 5, 4]] >>> gens = [Permutation(h) for h in gens] >>> base = [0, 2] >>> g = Permutation([2, 1, 0, 3, 4, 5]) >>> canonical_free(base, gens, g, 4) [0, 3, 1, 2, 5, 4] Consider the product of Riemann tensors ``T = R^{a}_{d0}^{d1,d2}*R_{d2,d1}^{d0,b}`` The order of the indices is ``[a, b, d0, -d0, d1, -d1, d2, -d2]`` The permutation corresponding to the tensor is ``g = [0, 3, 4, 6, 7, 5, 2, 1, 8, 9]`` In particular ``a`` is position ``0``, ``b`` is in position ``9``. Use the slot symmetries to get `T` is a form which is the minimal in lexicographic order in the free indices ``a`` and ``b``, e.g. ``-R^{a}_{d0}^{d1,d2}*R^{b,d0}_{d2,d1}`` corresponding to ``[0, 3, 4, 6, 1, 2, 7, 5, 9, 8]`` >>> from sympy.combinatorics.tensor_can import riemann_bsgs, tensor_gens >>> base, gens = riemann_bsgs >>> size, sbase, sgens = tensor_gens(base, gens, [[], []], 0) >>> g = Permutation([0, 3, 4, 6, 7, 5, 2, 1, 8, 9]) >>> canonical_free(sbase, [Permutation(h) for h in sgens], g, 2) [0, 3, 4, 6, 1, 2, 7, 5, 9, 8] """ g = g.array_form size = len(g) if not base: return g[:] transversals = get_transversals(base, gens) m = len(base) for x in sorted(g[:-2]): if x not in base: base.append(x) h = g for i, transv in enumerate(transversals): b = base[i] h_i = [size] * num_free # find the element s in transversals[i] such that # _af_rmul(h, s) has its free elements with the lowest position in h s = None for sk in transv.values(): h1 = _af_rmul(h, sk) hi = [h1.index(ix) for ix in range(num_free)] if hi < h_i: h_i = hi s = sk if s: h = _af_rmul(h, s) return h
def euler_equations(L, funcs=(), vars=()): r""" Find the Euler-Lagrange equations [1]_ for a given Lagrangian. Parameters ========== L : Expr The Lagrangian that should be a function of the functions listed in the second argument and their derivatives. For example, in the case of two functions `f(x,y)`, `g(x,y)` and two independent variables `x`, `y` the Lagrangian would have the form: .. math:: L\left(f(x,y),g(x,y),\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}, \frac{\partial g(x,y)}{\partial x}, \frac{\partial g(x,y)}{\partial y},x,y\right) In many cases it is not necessary to provide anything, except the Lagrangian, it will be auto-detected (and an error raised if this couldn't be done). funcs : Function or an iterable of Functions The functions that the Lagrangian depends on. The Euler equations are differential equations for each of these functions. vars : Symbol or an iterable of Symbols The Symbols that are the independent variables of the functions. Returns ======= eqns : list of Eq The list of differential equations, one for each function. Examples ======== >>> from sympy import Symbol, Function >>> from sympy.calculus.euler import euler_equations >>> x = Function('x') >>> t = Symbol('t') >>> L = (x(t).diff(t))**2/2 - x(t)**2/2 >>> euler_equations(L, x(t), t) [Eq(-x(t) - Derivative(x(t), t, t), 0)] >>> u = Function('u') >>> x = Symbol('x') >>> L = (u(t, x).diff(t))**2/2 - (u(t, x).diff(x))**2/2 >>> euler_equations(L, u(t, x), [t, x]) [Eq(-Derivative(u(t, x), t, t) + Derivative(u(t, x), x, x), 0)] References ========== .. [1] http://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation """ funcs = tuple(funcs) if iterable(funcs) else (funcs, ) if not funcs: funcs = tuple(L.atoms(Function)) else: for f in funcs: if not isinstance(f, Function): raise TypeError('Function expected, got: %s' % f) vars = tuple(vars) if iterable(vars) else (vars, ) if not vars: vars = funcs[0].args else: vars = tuple(sympify(var) for var in vars) if not all(isinstance(v, Symbol) for v in vars): raise TypeError('Variables are not symbols, got %s' % vars) for f in funcs: if not vars == f.args: raise ValueError("Variables %s don't match args: %s" % (vars, f)) order = max( len(d.variables) for d in L.atoms(Derivative) if d.expr in funcs) eqns = [] for f in funcs: eq = diff(L, f) for i in range(1, order + 1): for p in combinations_with_replacement(vars, i): eq = eq + S.NegativeOne**i * diff(L, diff(f, *p), *p) eqns.append(Eq(eq)) return eqns
def tensor_gens(base, gens, list_free_indices, sym=0): """ Returns size, res_base, res_gens BSGS for n tensors of the same type base, gens BSGS for tensors of this type list_free_indices list of the slots occupied by fixed indices for each of the tensors sym symmetry under commutation of two tensors sym None no symmetry sym 0 commuting sym 1 anticommuting Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.tensor_can import tensor_gens, get_symmetric_group_sgs >>> Permutation.print_cyclic = True two symmetric tensors with 3 indices without free indices >>> base, gens = get_symmetric_group_sgs(3) >>> tensor_gens(base, gens, [[], []]) (8, [0, 1, 3, 4], [Permutation(7)(0, 1), Permutation(7)(1, 2), Permutation(7)(3, 4), Permutation(7)(4, 5), Permutation(7)(0, 3)(1, 4)(2, 5)]) two symmetric tensors with 3 indices with free indices in slot 1 and 0 >>> tensor_gens(base, gens, [[1], [0]]) (8, [0, 4], [Permutation(7)(0, 2), Permutation(7)(4, 5)]) four symmetric tensors with 3 indices, two of which with free indices """ def _get_bsgs(G, base, gens, free_indices): """ return the BSGS for G.pointwise_stabilizer(free_indices) """ if not free_indices: return base[:], gens[:] else: H = G.pointwise_stabilizer(free_indices) base, sgs = H.schreier_sims_incremental() return base, sgs # if not base there is no slot symmetry for the component tensors # if list_free_indices.count([]) < 2 there is no commutation symmetry # so there is no resulting slot symmetry if not base and list_free_indices.count([]) < 2: n = len(list_free_indices) size = gens[0].size size = n * (gens[0].size - 2) + 2 return size, [], [_af_new(list(range(size)))] # if any(list_free_indices) one needs to compute the pointwise # stabilizer, so G is needed if any(list_free_indices): G = PermutationGroup(gens) else: G = None # no_free list of lists of indices for component tensors without fixed # indices no_free = [] size = gens[0].size id_af = list(range(size)) num_indices = size - 2 if not list_free_indices[0]: no_free.append(list(range(num_indices))) res_base, res_gens = _get_bsgs(G, base, gens, list_free_indices[0]) for i in range(1, len(list_free_indices)): base1, gens1 = _get_bsgs(G, base, gens, list_free_indices[i]) res_base, res_gens = bsgs_direct_product(res_base, res_gens, base1, gens1, 1) if not list_free_indices[i]: no_free.append(list(range(size - 2, size - 2 + num_indices))) size += num_indices nr = size - 2 res_gens = [h for h in res_gens if h._array_form != id_af] # if sym there are no commuting tensors stop here if sym is None or not no_free: if not res_gens: res_gens = [_af_new(id_af)] return size, res_base, res_gens # if the component tensors have moinimal BSGS, so is their direct # product P; the slot symmetry group is S = P*C, where C is the group # to (anti)commute the component tensors with no free indices # a stabilizer has the property S_i = P_i*C_i; # the BSGS of P*C has SGS_P + SGS_C and the base is # the ordered union of the bases of P and C. # If P has minimal BSGS, so has S with this base. base_comm = [] for i in range(len(no_free) - 1): ind1 = no_free[i] ind2 = no_free[i + 1] a = list(range(ind1[0])) a.extend(ind2) a.extend(ind1) base_comm.append(ind1[0]) a.extend(list(range(ind2[-1] + 1, nr))) if sym == 0: a.extend([nr, nr + 1]) else: a.extend([nr + 1, nr]) res_gens.append(_af_new(a)) res_base = list(res_base) # each base is ordered; order the union of the two bases for i in base_comm: if i not in res_base: res_base.append(i) res_base.sort() if not res_gens: res_gens = [_af_new(id_af)] return size, res_base, res_gens
def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True): """ Return an Euler-Maclaurin approximation of self, where m is the number of leading terms to sum directly and n is the number of terms in the tail. With m = n = 0, this is simply the corresponding integral plus a first-order endpoint correction. Returns (s, e) where s is the Euler-Maclaurin approximation and e is the estimated error (taken to be the magnitude of the first omitted term in the tail): >>> from sympy.abc import k, a, b >>> from sympy import Sum >>> Sum(1/k, (k, 2, 5)).doit().evalf() 1.28333333333333 >>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin() >>> s -log(2) + 7/20 + log(5) >>> from sympy import sstr >>> print(sstr((s.evalf(), e.evalf()), full_prec=True)) (1.26629073187415, 0.0175000000000000) The endpoints may be symbolic: >>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin() >>> s -log(a) + log(b) + 1/(2*b) + 1/(2*a) >>> e Abs(1/(12*b**2) - 1/(12*a**2)) If the function is a polynomial of degree at most 2n+1, the Euler-Maclaurin formula becomes exact (and e = 0 is returned): >>> Sum(k, (k, 2, b)).euler_maclaurin() (b**2/2 + b/2 - 1, 0) >>> Sum(k, (k, 2, b)).doit() b**2/2 + b/2 - 1 With a nonzero eps specified, the summation is ended as soon as the remainder term is less than the epsilon. """ from sympy.functions import bernoulli, factorial from sympy.integrals import Integral m = int(m) n = int(n) f = self.function if len(self.limits) != 1: raise ValueError("More than 1 limit") i, a, b = self.limits[0] if (a > b) == True: if a - b == 1: return S.Zero, S.Zero a, b = b + 1, a - 1 f = -f s = S.Zero if m: if b.is_Integer and a.is_Integer: m = min(m, b - a + 1) if not eps or f.is_polynomial(i): for k in range(m): s += f.subs(i, a + k) else: term = f.subs(i, a) if term: test = abs(term.evalf(3)) < eps if test == True: return s, abs(term) elif not (test == False): # a symbolic Relational class, can't go further return term, S.Zero s += term for k in range(1, m): term = f.subs(i, a + k) if abs(term.evalf(3)) < eps and term != 0: return s, abs(term) s += term if b - a + 1 == m: return s, S.Zero a += m x = Dummy('x') I = Integral(f.subs(i, x), (x, a, b)) if eval_integral: I = I.doit() s += I def fpoint(expr): if b is S.Infinity: return expr.subs(i, a), 0 return expr.subs(i, a), expr.subs(i, b) fa, fb = fpoint(f) iterm = (fa + fb) / 2 g = f.diff(i) for k in range(1, n + 2): ga, gb = fpoint(g) term = bernoulli(2 * k) / factorial(2 * k) * (gb - ga) if (eps and term and abs(term.evalf(3)) < eps) or (k > n): break s += term g = g.diff(i, 2, simplify=False) return s + iterm, abs(term)
def test_chop_value(): for i in range(-27, 28): assert (Pow(10, i) * 2).n(chop=10**i) and not (Pow(10, i)).n(chop=10**i)
def _eval_is_Identity(self): if not all(self[i, i] == 1 for i in range(self.rows)): return False return len(self._smat) == self.rows
def eval_sum_direct(expr, limits): from sympy.core import Add (i, a, b) = limits dif = b - a return Add(*[expr.subs(i, a + j) for j in range(dif + 1)])
def _eval_eye(cls, rows, cols): entries = {(i, i): S.One for i in range(min(rows, cols))} return cls._new(rows, cols, entries)
def is_convergent(self): r"""Checks for the convergence of a Sum. We divide the study of convergence of infinite sums and products in two parts. First Part: One part is the question whether all the terms are well defined, i.e., they are finite in a sum and also non-zero in a product. Zero is the analogy of (minus) infinity in products as :math:`e^{-\infty} = 0`. Second Part: The second part is the question of convergence after infinities, and zeros in products, have been omitted assuming that their number is finite. This means that we only consider the tail of the sum or product, starting from some point after which all terms are well defined. For example, in a sum of the form: .. math:: \sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b} where a and b are numbers. The routine will return true, even if there are infinities in the term sequence (at most two). An analogous product would be: .. math:: \prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + an + b}} This is how convergence is interpreted. It is concerned with what happens at the limit. Finding the bad terms is another independent matter. Note: It is responsibility of user to see that the sum or product is well defined. There are various tests employed to check the convergence like divergence test, root test, integral test, alternating series test, comparison tests, Dirichlet tests. It returns true if Sum is convergent and false if divergent and NotImplementedError if it can not be checked. References ========== .. [1] https://en.wikipedia.org/wiki/Convergence_tests Examples ======== >>> from sympy import factorial, S, Sum, Symbol, oo >>> n = Symbol('n', integer=True) >>> Sum(n/(n - 1), (n, 4, 7)).is_convergent() True >>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent() False >>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent() False >>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent() True See Also ======== Sum.is_absolutely_convergent() Product.is_convergent() """ from sympy import Interval, Integral, Limit, log, symbols, Ge, Gt, simplify p, q, r = symbols('p q r', cls=Wild) sym = self.limits[0][0] lower_limit = self.limits[0][1] upper_limit = self.limits[0][2] sequence_term = self.function if len(sequence_term.free_symbols) > 1: raise NotImplementedError( "convergence checking for more than one symbol " "containing series is not handled") if lower_limit.is_finite and upper_limit.is_finite: return S.true # transform sym -> -sym and swap the upper_limit = S.Infinity # and lower_limit = - upper_limit if lower_limit is S.NegativeInfinity: if upper_limit is S.Infinity: return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \ Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent() sequence_term = simplify(sequence_term.xreplace({sym: -sym})) lower_limit = -upper_limit upper_limit = S.Infinity sym_ = Dummy(sym.name, integer=True, positive=True) sequence_term = sequence_term.xreplace({sym: sym_}) sym = sym_ interval = Interval(lower_limit, upper_limit) # Piecewise function handle if sequence_term.is_Piecewise: for func, cond in sequence_term.args: # see if it represents something going to oo if cond == True or cond.as_set().sup is S.Infinity: s = Sum(func, (sym, lower_limit, upper_limit)) return s.is_convergent() return S.true ### -------- Divergence test ----------- ### try: lim_val = limit(sequence_term, sym, upper_limit) if lim_val.is_number and lim_val is not S.Zero: return S.false except NotImplementedError: pass try: lim_val_abs = limit(abs(sequence_term), sym, upper_limit) if lim_val_abs.is_number and lim_val_abs is not S.Zero: return S.false except NotImplementedError: pass order = O(sequence_term, (sym, S.Infinity)) ### --------- p-series test (1/n**p) ---------- ### p1_series_test = order.expr.match(sym**p) if p1_series_test is not None: if p1_series_test[p] < -1: return S.true if p1_series_test[p] >= -1: return S.false p2_series_test = order.expr.match((1 / sym)**p) if p2_series_test is not None: if p2_series_test[p] > 1: return S.true if p2_series_test[p] <= 1: return S.false ### ------------- comparison test ------------- ### # 1/(n**p*log(n)**q*log(log(n))**r) comparison n_log_test = order.expr.match( 1 / (sym**p * log(sym)**q * log(log(sym))**r)) if n_log_test is not None: if (n_log_test[p] > 1 or (n_log_test[p] == 1 and n_log_test[q] > 1) or (n_log_test[p] == n_log_test[q] == 1 and n_log_test[r] > 1)): return S.true return S.false ### ------------- Limit comparison test -----------### # (1/n) comparison try: lim_comp = limit(sym * sequence_term, sym, S.Infinity) if lim_comp.is_number and lim_comp > 0: return S.false except NotImplementedError: pass ### ----------- ratio test ---------------- ### next_sequence_term = sequence_term.xreplace({sym: sym + 1}) ratio = combsimp(powsimp(next_sequence_term / sequence_term)) try: lim_ratio = limit(ratio, sym, upper_limit) if lim_ratio.is_number: if abs(lim_ratio) > 1: return S.false if abs(lim_ratio) < 1: return S.true except NotImplementedError: pass ### ----------- root test ---------------- ### lim = Limit(abs(sequence_term)**(1 / sym), sym, S.Infinity) try: lim_evaluated = lim.doit() if lim_evaluated.is_number: if lim_evaluated < 1: return S.true if lim_evaluated > 1: return S.false except NotImplementedError: pass ### ------------- alternating series test ----------- ### dict_val = sequence_term.match((-1)**(sym + p) * q) if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval): return S.true ### ------------- integral test -------------- ### check_interval = None maxima = solveset(sequence_term.diff(sym), sym, interval) if not maxima: check_interval = interval elif isinstance(maxima, FiniteSet) and maxima.sup.is_number: check_interval = Interval(maxima.sup, interval.sup) if (check_interval is not None and (is_decreasing(sequence_term, check_interval) or is_decreasing(-sequence_term, check_interval))): integral_val = Integral(sequence_term, (sym, lower_limit, upper_limit)) try: integral_val_evaluated = integral_val.doit() if integral_val_evaluated.is_number: return S(integral_val_evaluated.is_finite) except NotImplementedError: pass ### ----- Dirichlet and bounded times convergent tests ----- ### # TODO # # Dirichlet_test # https://en.wikipedia.org/wiki/Dirichlet%27s_test # # Bounded times convergent test # It is based on comparison theorems for series. # In particular, if the general term of a series can # be written as a product of two terms a_n and b_n # and if a_n is bounded and if Sum(b_n) is absolutely # convergent, then the original series Sum(a_n * b_n) # is absolutely convergent and so convergent. # # The following code can grows like 2**n where n is the # number of args in order.expr # Possibly combined with the potentially slow checks # inside the loop, could make this test extremely slow # for larger summation expressions. if order.expr.is_Mul: args = order.expr.args argset = set(args) ### -------------- Dirichlet tests -------------- ### m = Dummy('m', integer=True) def _dirichlet_test(g_n): try: ing_val = limit( Sum(g_n, (sym, interval.inf, m)).doit(), m, S.Infinity) if ing_val.is_finite: return S.true except NotImplementedError: pass ### -------- bounded times convergent test ---------### def _bounded_convergent_test(g1_n, g2_n): try: lim_val = limit(g1_n, sym, upper_limit) if lim_val.is_finite or ( isinstance(lim_val, AccumulationBounds) and (lim_val.max - lim_val.min).is_finite): if Sum(g2_n, (sym, lower_limit, upper_limit)).is_absolutely_convergent(): return S.true except NotImplementedError: pass for n in range(1, len(argset)): for a_tuple in itertools.combinations(args, n): b_set = argset - set(a_tuple) a_n = Mul(*a_tuple) b_n = Mul(*b_set) if is_decreasing(a_n, interval): dirich = _dirichlet_test(b_n) if dirich is not None: return dirich bc_test = _bounded_convergent_test(a_n, b_n) if bc_test is not None: return bc_test _sym = self.limits[0][0] sequence_term = sequence_term.xreplace({sym: _sym}) raise NotImplementedError( "The algorithm to find the Sum convergence of %s " "is not yet implemented" % (sequence_term))