def test_ei():
    assert Ei(0) is S.NegativeInfinity
    assert Ei(oo) is S.Infinity
    assert Ei(-oo) is S.Zero

    assert tn_branch(Ei)
    assert mytd(Ei(x), exp(x)/x, x)
    assert mytn(Ei(x), Ei(x).rewrite(uppergamma),
                -uppergamma(0, x*polar_lift(-1)) - I*pi, x)
    assert mytn(Ei(x), Ei(x).rewrite(expint),
                -expint(1, x*polar_lift(-1)) - I*pi, x)
    assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x)
    assert Ei(x*exp_polar(2*I*pi)) == Ei(x) + 2*I*pi
    assert Ei(x*exp_polar(-2*I*pi)) == Ei(x) - 2*I*pi

    assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x)
    assert mytn(Ei(x*polar_lift(I)), Ei(x*polar_lift(I)).rewrite(Si),
                Ci(x) + I*Si(x) + I*pi/2, x)

    assert Ei(log(x)).rewrite(li) == li(x)
    assert Ei(2*log(x)).rewrite(li) == li(x**2)

    assert gruntz(Ei(x+exp(-x))*exp(-x)*x, x, oo) == 1

    assert Ei(x).series(x) == EulerGamma + log(x) + x + x**2/4 + \
        x**3/18 + x**4/96 + x**5/600 + O(x**6)
    assert Ei(x).series(x, 1, 3) == Ei(1) + E*(x - 1) + O((x - 1)**3, (x, 1))
    assert Ei(x).series(x, oo) == \
        (120/x**5 + 24/x**4 + 6/x**3 + 2/x**2 + 1/x + 1 + O(x**(-6), (x, oo)))*exp(x)/x

    assert str(Ei(cos(2)).evalf(n=10)) == '-0.6760647401'
    raises(ArgumentIndexError, lambda: Ei(x).fdiff(2))
def test_Li():
    assert Li(2) is S.Zero
    assert Li(oo) is oo

    assert isinstance(Li(z), Li)

    assert diff(Li(z), z) == 1/log(z)

    assert gruntz(1/Li(z), z, oo) is S.Zero
    assert Li(z).rewrite(li) == li(z) - li(2)
    assert Li(z).series(z) == \
        log(z)**5/600 + log(z)**4/96 + log(z)**3/18 + log(z)**2/4 + log(z) + log(log(z)) - li(2) + EulerGamma
    raises(ArgumentIndexError, lambda: Li(z).fdiff(2))
示例#3
0
def test_manualintegrate_special():
    f, F = 4*exp(-x**2/3), 2*sqrt(3)*sqrt(pi)*erf(sqrt(3)*x/3)
    assert_is_integral_of(f, F)
    f, F = 3*exp(4*x**2), 3*sqrt(pi)*erfi(2*x)/4
    assert_is_integral_of(f, F)
    f, F = x**Rational(1, 3)*exp(-x/8), -16*uppergamma(Rational(4, 3), x/8)
    assert_is_integral_of(f, F)
    f, F = exp(2*x)/x, Ei(2*x)
    assert_is_integral_of(f, F)
    f, F = exp(1 + 2*x - x**2), sqrt(pi)*exp(2)*erf(x - 1)/2
    assert_is_integral_of(f, F)
    f = sin(x**2 + 4*x + 1)
    F = (sqrt(2)*sqrt(pi)*(-sin(3)*fresnelc(sqrt(2)*(2*x + 4)/(2*sqrt(pi))) +
        cos(3)*fresnels(sqrt(2)*(2*x + 4)/(2*sqrt(pi))))/2)
    assert_is_integral_of(f, F)
    f, F = cos(4*x**2), sqrt(2)*sqrt(pi)*fresnelc(2*sqrt(2)*x/sqrt(pi))/4
    assert_is_integral_of(f, F)
    f, F = sin(3*x + 2)/x, sin(2)*Ci(3*x) + cos(2)*Si(3*x)
    assert_is_integral_of(f, F)
    f, F = sinh(3*x - 2)/x, -sinh(2)*Chi(3*x) + cosh(2)*Shi(3*x)
    assert_is_integral_of(f, F)
    f, F = 5*cos(2*x - 3)/x, 5*cos(3)*Ci(2*x) + 5*sin(3)*Si(2*x)
    assert_is_integral_of(f, F)
    f, F = cosh(x/2)/x, Chi(x/2)
    assert_is_integral_of(f, F)
    f, F = cos(x**2)/x, Ci(x**2)/2
    assert_is_integral_of(f, F)
    f, F = 1/log(2*x + 1), li(2*x + 1)/2
    assert_is_integral_of(f, F)
    f, F = polylog(2, 5*x)/x, polylog(3, 5*x)
    assert_is_integral_of(f, F)
    f, F = 5/sqrt(3 - 2*sin(x)**2), 5*sqrt(3)*elliptic_f(x, Rational(2, 3))/3
    assert_is_integral_of(f, F)
    f, F = sqrt(4 + 9*sin(x)**2), 2*elliptic_e(x, Rational(-9, 4))
    assert_is_integral_of(f, F)
def test__eis():
    assert _eis(z).diff(z) == -_eis(z) + 1/z

    assert _eis(1/z).series(z) == \
        z + z**2 + 2*z**3 + 6*z**4 + 24*z**5 + O(z**6)

    assert Ei(z).rewrite('tractable') == exp(z)*_eis(z)
    assert li(z).rewrite('tractable') == z*_eis(log(z))

    assert _eis(z).rewrite('intractable') == exp(-z)*Ei(z)

    assert expand(li(z).rewrite('tractable').diff(z).rewrite('intractable')) \
        == li(z).diff(z)

    assert expand(Ei(z).rewrite('tractable').diff(z).rewrite('intractable')) \
        == Ei(z).diff(z)

    assert _eis(z).series(z, n=3) == EulerGamma + log(z) + z*(-log(z) - \
        EulerGamma + 1) + z**2*(log(z)/2 - Rational(3, 4) + EulerGamma/2)\
        + O(z**3*log(z))
    raises(ArgumentIndexError, lambda: _eis(z).fdiff(2))
示例#5
0
def composite(nth):
    """ Return the nth composite number, with the composite numbers indexed as
        composite(1) = 4, composite(2) = 6, etc....

        Examples
        ========

        >>> from sympy import composite
        >>> composite(36)
        52
        >>> composite(1)
        4
        >>> composite(17737)
        20000

        See Also
        ========

        sympy.ntheory.primetest.isprime : Test if n is prime
        primerange : Generate all primes in a given range
        primepi : Return the number of primes less than or equal to n
        prime : Return the nth prime
        compositepi : Return the number of positive composite numbers less than or equal to n
    """
    n = as_int(nth)
    if n < 1:
        raise ValueError("nth must be a positive integer; composite(1) == 4")
    composite_arr = [4, 6, 8, 9, 10, 12, 14, 15, 16, 18]
    if n <= 10:
        return composite_arr[n - 1]

    from sympy.functions.special.error_functions import li
    from sympy.functions.elementary.exponential import log

    a = 4 # Lower bound for binary search
    b = int(n*(log(n) + log(log(n)))) # Upper bound for the search.

    while a < b:
        mid = (a + b) >> 1
        if mid - li(mid) - 1 > n:
            b = mid
        else:
            a = mid + 1

    n_composites = a - primepi(a) - 1
    while n_composites > n:
        if not isprime(a):
            n_composites -= 1
        a -= 1
    if isprime(a):
        a -= 1
    return a
示例#6
0
def composite(nth):
    """ Return the nth composite number, with the composite numbers indexed as
        composite(1) = 4, composite(2) = 6, etc....

        Examples
        ========

        >>> from sympy import composite
        >>> composite(36)
        52
        >>> composite(1)
        4
        >>> composite(17737)
        20000

        See Also
        ========

        sympy.ntheory.primetest.isprime : Test if n is prime
        primerange : Generate all primes in a given range
        primepi : Return the number of primes less than or equal to n
        prime : Return the nth prime
        compositepi : Return the number of positive composite numbers less than or equal to n
    """
    n = as_int(nth)
    if n < 1:
        raise ValueError("nth must be a positive integer; composite(1) == 4")
    composite_arr = [4, 6, 8, 9, 10, 12, 14, 15, 16, 18]
    if n <= 10:
        return composite_arr[n - 1]

    from sympy.functions.special.error_functions import li
    from sympy.functions.elementary.exponential import log

    a = 4  # Lower bound for binary search
    b = int(n * (log(n) + log(log(n))))  # Upper bound for the search.

    while a < b:
        mid = (a + b) >> 1
        if mid - li(mid) - 1 > n:
            b = mid
        else:
            a = mid + 1

    n_composites = a - primepi(a) - 1
    while n_composites > n:
        if not isprime(a):
            n_composites -= 1
        a -= 1
    if isprime(a):
        a -= 1
    return a
示例#7
0
def test_Function_change_name():
    assert mcode(abs(x)) == "abs(x)"
    assert mcode(ceiling(x)) == "ceil(x)"
    assert mcode(arg(x)) == "angle(x)"
    assert mcode(im(x)) == "imag(x)"
    assert mcode(re(x)) == "real(x)"
    assert mcode(conjugate(x)) == "conj(x)"
    assert mcode(chebyshevt(y, x)) == "chebyshevT(y, x)"
    assert mcode(chebyshevu(y, x)) == "chebyshevU(y, x)"
    assert mcode(laguerre(x, y)) == "laguerreL(x, y)"
    assert mcode(Chi(x)) == "coshint(x)"
    assert mcode(Shi(x)) == "sinhint(x)"
    assert mcode(Ci(x)) == "cosint(x)"
    assert mcode(Si(x)) == "sinint(x)"
    assert mcode(li(x)) == "logint(x)"
    assert mcode(loggamma(x)) == "gammaln(x)"
    assert mcode(polygamma(x, y)) == "psi(x, y)"
    assert mcode(RisingFactorial(x, y)) == "pochhammer(x, y)"
    assert mcode(DiracDelta(x)) == "dirac(x)"
    assert mcode(DiracDelta(x, 3)) == "dirac(3, x)"
    assert mcode(Heaviside(x)) == "heaviside(x)"
    assert mcode(Heaviside(x, y)) == "heaviside(x, y)"
示例#8
0
def test_Function_change_name():
    assert mcode(abs(x)) == "abs(x)"
    assert mcode(ceiling(x)) == "ceil(x)"
    assert mcode(arg(x)) == "angle(x)"
    assert mcode(im(x)) == "imag(x)"
    assert mcode(re(x)) == "real(x)"
    assert mcode(conjugate(x)) == "conj(x)"
    assert mcode(chebyshevt(y, x)) == "chebyshevT(y, x)"
    assert mcode(chebyshevu(y, x)) == "chebyshevU(y, x)"
    assert mcode(laguerre(x, y)) == "laguerreL(x, y)"
    assert mcode(Chi(x)) == "coshint(x)"
    assert mcode(Shi(x)) ==  "sinhint(x)"
    assert mcode(Ci(x)) == "cosint(x)"
    assert mcode(Si(x)) ==  "sinint(x)"
    assert mcode(li(x)) ==  "logint(x)"
    assert mcode(loggamma(x)) ==  "gammaln(x)"
    assert mcode(polygamma(x, y)) == "psi(x, y)"
    assert mcode(RisingFactorial(x, y)) == "pochhammer(x, y)"
    assert mcode(DiracDelta(x)) == "dirac(x)"
    assert mcode(DiracDelta(x, 3)) == "dirac(3, x)"
    assert mcode(Heaviside(x)) == "heaviside(x)"
    assert mcode(Heaviside(x, y)) == "heaviside(x, y)"
示例#9
0
def prime(nth):
    """ Return the nth prime, with the primes indexed as prime(1) = 2,
        prime(2) = 3, etc.... The nth prime is approximately n*log(n).

        Logarithmic integral of x is a pretty nice approximation for number of
        primes <= x, i.e.
        li(x) ~ pi(x)
        In fact, for the numbers we are concerned about( x<1e11 ),
        li(x) - pi(x) < 50000

        Also,
        li(x) > pi(x) can be safely assumed for the numbers which
        can be evaluated by this function.

        Here, we find the least integer m such that li(m) > n using binary search.
        Now pi(m-1) < li(m-1) <= n,

        We find pi(m - 1) using primepi function.

        Starting from m, we have to find n - pi(m-1) more primes.

        For the inputs this implementation can handle, we will have to test
        primality for at max about 10**5 numbers, to get our answer.

        References
        ==========

        - https://en.wikipedia.org/wiki/Prime_number_theorem#Table_of_.CF.80.28x.29.2C_x_.2F_log_x.2C_and_li.28x.29
        - https://en.wikipedia.org/wiki/Prime_number_theorem#Approximations_for_the_nth_prime_number
        - https://en.wikipedia.org/wiki/Skewes%27_number

        Examples
        ========

        >>> from sympy import prime
        >>> prime(10)
        29
        >>> prime(1)
        2
        >>> prime(100000)
        1299709

        See Also
        ========

        sympy.ntheory.primetest.isprime : Test if n is prime
        primerange : Generate all primes in a given range
        primepi : Return the number of primes less than or equal to n
    """
    n = as_int(nth)
    if n < 1:
        raise ValueError("nth must be a positive integer; prime(1) == 2")
    if n <= len(sieve._list):
        return sieve[n]

    from sympy.functions.special.error_functions import li
    from sympy.functions.elementary.exponential import log

    a = 2  # Lower bound for binary search
    b = int(n * (log(n) + log(log(n))))  # Upper bound for the search.

    while a < b:
        mid = (a + b) >> 1
        if li(mid) > n:
            b = mid
        else:
            a = mid + 1
    n_primes = primepi(a - 1)
    while n_primes < n:
        if isprime(a):
            n_primes += 1
        a += 1
    return a - 1
示例#10
0
文件: generate.py 项目: AStorus/sympy
def prime(nth):
    """ Return the nth prime, with the primes indexed as prime(1) = 2,
        prime(2) = 3, etc.... The nth prime is approximately n*log(n).

        Logarithmic integral of x is a pretty nice approximation for number of
        primes <= x, i.e.
        li(x) ~ pi(x)
        In fact, for the numbers we are concerned about( x<1e11 ),
        li(x) - pi(x) < 50000

        Also,
        li(x) > pi(x) can be safely assumed for the numbers which
        can be evaluated by this function.

        Here, we find the least integer m such that li(m) > n using binary search.
        Now pi(m-1) < li(m-1) <= n,

        We find pi(m - 1) using primepi function.

        Starting from m, we have to find n - pi(m-1) more primes.

        For the inputs this implementation can handle, we will have to test
        primality for at max about 10**5 numbers, to get our answer.

        References
        ==========

        - https://en.wikipedia.org/wiki/Prime_number_theorem#Table_of_.CF.80.28x.29.2C_x_.2F_log_x.2C_and_li.28x.29
        - https://en.wikipedia.org/wiki/Prime_number_theorem#Approximations_for_the_nth_prime_number
        - https://en.wikipedia.org/wiki/Skewes%27_number

        Examples
        ========

        >>> from sympy import prime
        >>> prime(10)
        29
        >>> prime(1)
        2
        >>> prime(100000)
        1299709

        See Also
        ========

        sympy.ntheory.primetest.isprime : Test if n is prime
        primerange : Generate all primes in a given range
        primepi : Return the number of primes less than or equal to n
    """
    n = as_int(nth)
    if n < 1:
        raise ValueError("nth must be a positive integer; prime(1) == 2")
    prime_arr = [2, 3, 5, 7, 11, 13, 17]
    if n <= 7:
        return prime_arr[n - 1]

    from sympy.functions.special.error_functions import li
    from sympy.functions.elementary.exponential import log

    a = 2 # Lower bound for binary search
    b = int(n*(log(n) + log(log(n)))) # Upper bound for the search.

    while a < b:
        mid = (a + b) >> 1
        if li(mid) > n:
            b = mid
        else:
            a = mid + 1
    n_primes = primepi(a - 1)
    while n_primes < n:
        if isprime(a):
            n_primes += 1
        a += 1
    return a - 1
示例#11
0
def test_li():
    z = Symbol("z")
    zr = Symbol("z", real=True)
    zp = Symbol("z", positive=True)
    zn = Symbol("z", negative=True)

    assert li(0) is S.Zero
    assert li(1) is -oo
    assert li(oo) is oo

    assert isinstance(li(z), li)
    assert unchanged(li, -zp)
    assert unchanged(li, zn)

    assert diff(li(z), z) == 1/log(z)

    assert conjugate(li(z)) == li(conjugate(z))
    assert conjugate(li(-zr)) == li(-zr)
    assert unchanged(conjugate, li(-zp))
    assert unchanged(conjugate, li(zn))

    assert li(z).rewrite(Li) == Li(z) + li(2)
    assert li(z).rewrite(Ei) == Ei(log(z))
    assert li(z).rewrite(uppergamma) == (-log(1/log(z))/2 - log(-log(z)) +
                                         log(log(z))/2 - expint(1, -log(z)))
    assert li(z).rewrite(Si) == (-log(I*log(z)) - log(1/log(z))/2 +
                                 log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)))
    assert li(z).rewrite(Ci) == (-log(I*log(z)) - log(1/log(z))/2 +
                                 log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)))
    assert li(z).rewrite(Shi) == (-log(1/log(z))/2 + log(log(z))/2 +
                                  Chi(log(z)) - Shi(log(z)))
    assert li(z).rewrite(Chi) == (-log(1/log(z))/2 + log(log(z))/2 +
                                  Chi(log(z)) - Shi(log(z)))
    assert li(z).rewrite(hyper) ==(log(z)*hyper((1, 1), (2, 2), log(z)) -
                                   log(1/log(z))/2 + log(log(z))/2 + EulerGamma)
    assert li(z).rewrite(meijerg) == (-log(1/log(z))/2 - log(-log(z)) + log(log(z))/2 -
                                      meijerg(((), (1,)), ((0, 0), ()), -log(z)))

    assert gruntz(1/li(z), z, oo) is S.Zero
    assert li(z).series(z) == log(z)**5/600 + log(z)**4/96 + log(z)**3/18 + log(z)**2/4 + \
            log(z) + log(log(z)) + EulerGamma
    raises(ArgumentIndexError, lambda: li(z).fdiff(2))