示例#1
0
def test_function__eval_nseries():
    n = Symbol('n')

    assert sin(x)._eval_nseries(x, 2, None) == x + O(x**2)
    assert sin(x + 1)._eval_nseries(x, 2, None) == x*cos(1) + sin(1) + O(x**2)
    assert sin(pi*(1 - x))._eval_nseries(x, 2, None) == pi*x + O(x**2)
    assert acos(1 - x**2)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(x**2) + O(x**2)
    assert polygamma(n, x + 1)._eval_nseries(x, 2, None) == \
        polygamma(n, 1) + polygamma(n + 1, 1)*x + O(x**2)
    raises(PoleError, lambda: sin(1/x)._eval_nseries(x, 2, None))
    assert acos(1 - x)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(x) + sqrt(2)*x**(S(3)/2)/12 + O(x**2)
    assert acos(1 + x)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(-x) + sqrt(2)*(-x)**(S(3)/2)/12 + O(x**2)
    assert loggamma(1/x)._eval_nseries(x, 0, None) == \
        log(x)/2 - log(x)/x - 1/x + O(1, x)
    assert loggamma(log(1/x)).nseries(x, n=1, logx=y) == loggamma(-y)

    # issue 6725:
    assert expint(Rational(3, 2), -x)._eval_nseries(x, 5, None) == \
        2 - 2*sqrt(pi)*sqrt(-x) - 2*x + x**2 + x**3/3 + x**4/12 + 4*I*x**(S(3)/2)*sqrt(-x)/3 + \
        2*I*x**(S(5)/2)*sqrt(-x)/5 + 2*I*x**(S(7)/2)*sqrt(-x)/21 + O(x**5)
    assert sin(sqrt(x))._eval_nseries(x, 3, None) == \
        sqrt(x) - x**Rational(3, 2)/6 + x**Rational(5, 2)/120 + O(x**3)

    # issue 19065:
    s1 = f(x,y).series(y, n=2)
    assert {i.name for i in s1.atoms(Symbol)} == {'x', 'xi', 'y'}
    xi = Symbol('xi')
    s2 = f(xi, y).series(y, n=2)
    assert {i.name for i in s2.atoms(Symbol)} == {'xi', 'xi0', 'y'}
def test_factorial_diff():
    n = Symbol('n', integer=True)

    assert factorial(n).diff(n) == \
        gamma(1 + n)*polygamma(0, 1 + n)
    assert factorial(n**2).diff(n) == \
        2*n*gamma(1 + n**2)*polygamma(0, 1 + n**2)
    raises(ArgumentIndexError, lambda: factorial(n**2).fdiff(2))
示例#3
0
def test_polygamma_expansion():
    # A. & S., pa. 259 and 260
    assert polygamma(0, 1/x).nseries(x, n=3) == \
        -log(x) - x/2 - x**2/12 + O(x**3)
    assert polygamma(1, 1/x).series(x, n=5) == \
        x + x**2/2 + x**3/6 + O(x**5)
    assert polygamma(3, 1/x).nseries(x, n=11) == \
        2*x**3 + 3*x**4 + 2*x**5 - x**7 + 4*x**9/3 + O(x**11)
示例#4
0
def test_multigamma():
    from sympy.concrete.products import Product
    p = Symbol('p')
    _k = Dummy('_k')

    assert multigamma(x, p).dummy_eq(pi**(p*(p - 1)/4)*\
        Product(gamma(x + (1 - _k)/2), (_k, 1, p)))

    assert conjugate(multigamma(x, p)).dummy_eq(pi**((conjugate(p) - 1)*\
        conjugate(p)/4)*Product(gamma(conjugate(x) + (1-conjugate(_k))/2), (_k, 1, p)))
    assert conjugate(multigamma(x, 1)) == gamma(conjugate(x))

    p = Symbol('p', positive=True)
    assert conjugate(multigamma(x, p)).dummy_eq(pi**((p - 1)*p/4)*\
        Product(gamma(conjugate(x) + (1-conjugate(_k))/2), (_k, 1, p)))

    assert multigamma(nan, 1) is nan
    assert multigamma(oo, 1).doit() is oo

    assert multigamma(1, 1) == 1
    assert multigamma(2, 1) == 1
    assert multigamma(3, 1) == 2

    assert multigamma(102, 1) == factorial(101)
    assert multigamma(S.Half, 1) == sqrt(pi)

    assert multigamma(1, 2) == pi
    assert multigamma(2, 2) == pi/2

    assert multigamma(1, 3) is zoo
    assert multigamma(2, 3) == pi**2/2
    assert multigamma(3, 3) == 3*pi**2/2

    assert multigamma(x, 1).diff(x) == gamma(x)*polygamma(0, x)
    assert multigamma(x, 2).diff(x) == sqrt(pi)*gamma(x)*gamma(x - S.Half)*\
        polygamma(0, x) + sqrt(pi)*gamma(x)*gamma(x - S.Half)*polygamma(0, x - S.Half)

    assert multigamma(x - 1, 1).expand(func=True) == gamma(x)/(x - 1)
    assert multigamma(x + 2, 1).expand(func=True, mul=False) == x*(x + 1)*\
        gamma(x)
    assert multigamma(x - 1, 2).expand(func=True) == sqrt(pi)*gamma(x)*\
        gamma(x + S.Half)/(x**3 - 3*x**2 + x*Rational(11, 4) - Rational(3, 4))
    assert multigamma(x - 1, 3).expand(func=True) == pi**Rational(3, 2)*gamma(x)**2*\
        gamma(x + S.Half)/(x**5 - 6*x**4 + 55*x**3/4 - 15*x**2 + x*Rational(31, 4) - Rational(3, 2))

    assert multigamma(n, 1).rewrite(factorial) == factorial(n - 1)
    assert multigamma(n, 2).rewrite(factorial) == sqrt(pi)*\
        factorial(n - Rational(3, 2))*factorial(n - 1)
    assert multigamma(n, 3).rewrite(factorial) == pi**Rational(3, 2)*\
        factorial(n - 2)*factorial(n - Rational(3, 2))*factorial(n - 1)

    assert multigamma(Rational(-1, 2), 3, evaluate=False).is_real == False
    assert multigamma(S.Half, 3, evaluate=False).is_real == False
    assert multigamma(0, 1, evaluate=False).is_real == False
    assert multigamma(1, 3, evaluate=False).is_real == False
    assert multigamma(-1.0, 3, evaluate=False).is_real == False
    assert multigamma(0.7, 3, evaluate=False).is_real == True
    assert multigamma(3, 3, evaluate=False).is_real == True
示例#5
0
def test_digamma():
    assert digamma(nan) == nan

    assert digamma(oo) == oo
    assert digamma(-oo) == oo
    assert digamma(I*oo) == oo
    assert digamma(-I*oo) == oo

    assert digamma(-9) == zoo

    assert digamma(-9) == zoo
    assert digamma(-1) == zoo

    assert digamma(0) == zoo

    assert digamma(1) == -EulerGamma
    assert digamma(7) == Rational(49, 20) - EulerGamma

    def t(m, n):
        x = S(m)/n
        r = digamma(x)
        if r.has(digamma):
            return False
        return abs(digamma(x.n()).n() - r.n()).n() < 1e-10
    assert t(1, 2)
    assert t(3, 2)
    assert t(-1, 2)
    assert t(1, 4)
    assert t(-3, 4)
    assert t(1, 3)
    assert t(4, 3)
    assert t(3, 4)
    assert t(2, 3)
    assert t(123, 5)

    assert digamma(x).rewrite(zeta) == polygamma(0, x)

    assert digamma(x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma

    assert digamma(I).is_real is None

    assert digamma(x,evaluate=False).fdiff() == polygamma(1, x)

    assert digamma(x,evaluate=False).is_real is None

    assert digamma(x,evaluate=False).is_positive is None

    assert digamma(x,evaluate=False).is_negative is None

    assert digamma(x,evaluate=False).rewrite(polygamma) == polygamma(0, x)
示例#6
0
 def fdiff(self, argindex=1):
     from sympy.functions.special.gamma_functions import polygamma
     if argindex == 1:
         # http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/01/
         n, k = self.args
         return binomial(n, k)*(polygamma(0, n + 1) - \
             polygamma(0, n - k + 1))
     elif argindex == 2:
         # http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/02/
         n, k = self.args
         return binomial(n, k)*(polygamma(0, n - k + 1) - \
             polygamma(0, k + 1))
     else:
         raise ArgumentIndexError(self, argindex)
示例#7
0
def test_gamma_series():
    assert gamma(x + 1).series(x, 0, 3) == \
        1 - EulerGamma*x + x**2*(EulerGamma**2/2 + pi**2/12) + O(x**3)
    assert gamma(x).series(x, -1, 3) == \
        -1/(x + 1) + EulerGamma - 1 + (x + 1)*(-1 - pi**2/12 - EulerGamma**2/2 + \
       EulerGamma) + (x + 1)**2*(-1 - pi**2/12 - EulerGamma**2/2 + EulerGamma**3/6 - \
       polygamma(2, 1)/6 + EulerGamma*pi**2/12 + EulerGamma) + O((x + 1)**3, (x, -1))
示例#8
0
def test_evalf_default():
    from sympy.functions.special.gamma_functions import polygamma
    assert type(sin(4.0)) == Real
    assert type(re(sin(I + 1.0))) == Real
    assert type(im(sin(I + 1.0))) == Real
    assert type(sin(4)) == sin
    assert type(polygamma(2, 4.0)) == Real
    assert type(sin(Rational(1, 4))) == sin
示例#9
0
def test_evalf_default():
    from sympy.functions.special.gamma_functions import polygamma
    assert type(sin(4.0)) == Real
    assert type(re(sin(I + 1.0))) == Real
    assert type(im(sin(I + 1.0))) == Real
    assert type(sin(4)) == sin
    assert type(polygamma(2,4.0)) == Real
    assert type(sin(Rational(1,4))) == sin
示例#10
0
def test_digamma_expand_func():
    assert digamma(x).expand(func=True) == polygamma(0, x)
    assert digamma(2*x).expand(func=True) == \
        polygamma(0, x)/2 + polygamma(0, Rational(1, 2) + x)/2 + log(2)
    assert digamma(-1 + x).expand(func=True) == \
        polygamma(0, x) - 1/(x - 1)
    assert digamma(1 + x).expand(func=True) == \
        1/x + polygamma(0, x )
    assert digamma(2 + x).expand(func=True) == \
        1/x + 1/(1 + x) + polygamma(0, x)
    assert digamma(3 + x).expand(func=True) == \
        polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x)
    assert digamma(4 + x).expand(func=True) == \
        polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x) + 1/(3 + x)
    assert digamma(x + y).expand(func=True) == \
        polygamma(0, x + y)
示例#11
0
def test_beta():
    x, y = Symbol('x'), Symbol('y')

    assert isinstance(beta(x, y), beta)

    assert expand_func(beta(x, y)) == gamma(x) * gamma(y) / gamma(x + y)
    assert expand_func(beta(x, y) - beta(y, x)) == 0  # Symmetric
    assert expand_func(beta(
        x, y)) == expand_func(beta(x, y + 1) + beta(x + 1, y)).simplify()

    assert diff(beta(x, y),
                x) == beta(x, y) * (polygamma(0, x) - polygamma(0, x + y))
    assert diff(beta(x, y),
                y) == beta(x, y) * (polygamma(0, y) - polygamma(0, x + y))

    assert conjugate(beta(x, y)) == beta(conjugate(x), conjugate(y))

    raises(ArgumentIndexError, lambda: beta(x, y).fdiff(3))

    assert beta(x, y).rewrite(gamma) == gamma(x) * gamma(y) / gamma(x + y)
示例#12
0
def test_trigamma():
    assert trigamma(nan) == nan

    assert trigamma(oo) == 0

    assert trigamma(1) == pi**2/6
    assert trigamma(2) == pi**2/6 - 1
    assert trigamma(3) == pi**2/6 - Rational(5, 4)

    assert trigamma(x, evaluate=False).rewrite(zeta) == zeta(2, x)
    assert trigamma(x, evaluate=False).rewrite(harmonic) == \
        trigamma(x).rewrite(polygamma).rewrite(harmonic)

    assert trigamma(x,evaluate=False).fdiff() == polygamma(2, x)

    assert trigamma(x,evaluate=False).is_real is None

    assert trigamma(x,evaluate=False).is_positive is None

    assert trigamma(x,evaluate=False).is_negative is None

    assert trigamma(x,evaluate=False).rewrite(polygamma) == polygamma(1, x)
示例#13
0
def test_binomial_diff():
    n = Symbol('n', integer=True)
    k = Symbol('k', integer=True)

    assert binomial(n, k).diff(n) == \
        (-polygamma(0, 1 + n - k) + polygamma(0, 1 + n))*binomial(n, k)
    assert binomial(n**2, k**3).diff(n) == \
        2*n*(-polygamma(
            0, 1 + n**2 - k**3) + polygamma(0, 1 + n**2))*binomial(n**2, k**3)

    assert binomial(n, k).diff(k) == \
        (-polygamma(0, 1 + k) + polygamma(0, 1 + n - k))*binomial(n, k)
    assert binomial(n**2, k**3).diff(k) == \
        3*k**2*(-polygamma(
            0, 1 + k**3) + polygamma(0, 1 + n**2 - k**3))*binomial(n**2, k**3)
    raises(ArgumentIndexError, lambda: binomial(n, k).fdiff(3))
示例#14
0
def test_beta():
    x, y = symbols('x y')
    t = Dummy('t')

    assert unchanged(beta, x, y)

    assert beta(5, -3).is_real == True
    assert beta(3, y).is_real is None

    assert expand_func(beta(x, y)) == gamma(x)*gamma(y)/gamma(x + y)
    assert expand_func(beta(x, y) - beta(y, x)) == 0  # Symmetric
    assert expand_func(beta(x, y)) == expand_func(beta(x, y + 1) + beta(x + 1, y)).simplify()

    assert diff(beta(x, y), x) == beta(x, y)*(polygamma(0, x) - polygamma(0, x + y))
    assert diff(beta(x, y), y) == beta(x, y)*(polygamma(0, y) - polygamma(0, x + y))

    assert conjugate(beta(x, y)) == beta(conjugate(x), conjugate(y))

    raises(ArgumentIndexError, lambda: beta(x, y).fdiff(3))

    assert beta(x, y).rewrite(gamma) == gamma(x)*gamma(y)/gamma(x + y)
    assert beta(x).rewrite(gamma) == gamma(x)**2/gamma(2*x)
    assert beta(x, y).rewrite(Integral).dummy_eq(Integral(t**(x - 1) * (1 - t)**(y - 1), (t, 0, 1)))
示例#15
0
def test_trigamma_expand_func():
    assert trigamma(2*x).expand(func=True) == \
        polygamma(1, x)/4 + polygamma(1, Rational(1, 2) + x)/4
    assert trigamma(1 + x).expand(func=True) == \
        polygamma(1, x) - 1/x**2
    assert trigamma(2 + x).expand(func=True, multinomial=False) == \
        polygamma(1, x) - 1/x**2 - 1/(1 + x)**2
    assert trigamma(3 + x).expand(func=True, multinomial=False) == \
        polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - 1/(2 + x)**2
    assert trigamma(4 + x).expand(func=True, multinomial=False) == \
        polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - \
        1/(2 + x)**2 - 1/(3 + x)**2
    assert trigamma(x + y).expand(func=True) == \
        polygamma(1, x + y)
    assert trigamma(3 + 4*x + y).expand(func=True, multinomial=False) == \
        polygamma(1, y + 4*x) - 1/(y + 4*x)**2 - \
        1/(1 + y + 4*x)**2 - 1/(2 + y + 4*x)**2
示例#16
0
def test_Function_change_name():
    assert mcode(abs(x)) == "abs(x)"
    assert mcode(ceiling(x)) == "ceil(x)"
    assert mcode(arg(x)) == "angle(x)"
    assert mcode(im(x)) == "imag(x)"
    assert mcode(re(x)) == "real(x)"
    assert mcode(conjugate(x)) == "conj(x)"
    assert mcode(chebyshevt(y, x)) == "chebyshevT(y, x)"
    assert mcode(chebyshevu(y, x)) == "chebyshevU(y, x)"
    assert mcode(laguerre(x, y)) == "laguerreL(x, y)"
    assert mcode(Chi(x)) == "coshint(x)"
    assert mcode(Shi(x)) == "sinhint(x)"
    assert mcode(Ci(x)) == "cosint(x)"
    assert mcode(Si(x)) == "sinint(x)"
    assert mcode(li(x)) == "logint(x)"
    assert mcode(loggamma(x)) == "gammaln(x)"
    assert mcode(polygamma(x, y)) == "psi(x, y)"
    assert mcode(RisingFactorial(x, y)) == "pochhammer(x, y)"
    assert mcode(DiracDelta(x)) == "dirac(x)"
    assert mcode(DiracDelta(x, 3)) == "dirac(3, x)"
    assert mcode(Heaviside(x)) == "heaviside(x)"
    assert mcode(Heaviside(x, y)) == "heaviside(x, y)"
示例#17
0
def test_Function_change_name():
    assert mcode(abs(x)) == "abs(x)"
    assert mcode(ceiling(x)) == "ceil(x)"
    assert mcode(arg(x)) == "angle(x)"
    assert mcode(im(x)) == "imag(x)"
    assert mcode(re(x)) == "real(x)"
    assert mcode(conjugate(x)) == "conj(x)"
    assert mcode(chebyshevt(y, x)) == "chebyshevT(y, x)"
    assert mcode(chebyshevu(y, x)) == "chebyshevU(y, x)"
    assert mcode(laguerre(x, y)) == "laguerreL(x, y)"
    assert mcode(Chi(x)) == "coshint(x)"
    assert mcode(Shi(x)) ==  "sinhint(x)"
    assert mcode(Ci(x)) == "cosint(x)"
    assert mcode(Si(x)) ==  "sinint(x)"
    assert mcode(li(x)) ==  "logint(x)"
    assert mcode(loggamma(x)) ==  "gammaln(x)"
    assert mcode(polygamma(x, y)) == "psi(x, y)"
    assert mcode(RisingFactorial(x, y)) == "pochhammer(x, y)"
    assert mcode(DiracDelta(x)) == "dirac(x)"
    assert mcode(DiracDelta(x, 3)) == "dirac(3, x)"
    assert mcode(Heaviside(x)) == "heaviside(x)"
    assert mcode(Heaviside(x, y)) == "heaviside(x, y)"
示例#18
0
 def _eval_rewrite_as_polygamma(self, n, m=1):
     from sympy.functions.special.gamma_functions import polygamma
     return S.NegativeOne**m / factorial(m - 1) * (polygamma(m - 1, 1) -
                                                   polygamma(m - 1, n + 1))
示例#19
0
def test_meijerint():
    from sympy.core.function import expand
    from sympy.core.symbol import symbols
    from sympy.functions.elementary.complexes import arg
    s, t, mu = symbols('s t mu', real=True)
    assert integrate(
        meijerg([], [], [0], [], s * t) *
        meijerg([], [], [mu / 2], [-mu / 2], t**2 / 4),
        (t, 0, oo)).is_Piecewise
    s = symbols('s', positive=True)
    assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo)) == \
        gamma(s + 1)
    assert integrate(x**s * meijerg([[], []], [[0], []], x), (x, 0, oo),
                     meijerg=True) == gamma(s + 1)
    assert isinstance(
        integrate(x**s * meijerg([[], []], [[0], []], x), (x, 0, oo),
                  meijerg=False), Integral)

    assert meijerint_indefinite(exp(x), x) == exp(x)

    # TODO what simplifications should be done automatically?
    # This tests "extra case" for antecedents_1.
    a, b = symbols('a b', positive=True)
    assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \
        b**(a + 1)/(a + 1)

    # This tests various conditions and expansions:
    assert meijerint_definite((x + 1)**3 * exp(-x), x, 0, oo) == (16, True)

    # Again, how about simplifications?
    sigma, mu = symbols('sigma mu', positive=True)
    i, c = meijerint_definite(exp(-((x - mu) / (2 * sigma))**2), x, 0, oo)
    assert simplify(i) == sqrt(pi) * sigma * (2 - erfc(mu / (2 * sigma)))
    assert c == True

    i, _ = meijerint_definite(exp(-mu * x) * exp(sigma * x), x, 0, oo)
    # TODO it would be nice to test the condition
    assert simplify(i) == 1 / (mu - sigma)

    # Test substitutions to change limits
    assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True)
    # Note: causes a NaN in _check_antecedents
    assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1
    assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == \
        1 - exp(-exp(I*arg(x))*abs(x))

    # Test -oo to oo
    assert meijerint_definite(exp(-x**2), x, -oo, oo) == (sqrt(pi), True)
    assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True)
    assert meijerint_definite(exp(-(2*x - 3)**2), x, -oo, oo) == \
        (sqrt(pi)/2, True)
    assert meijerint_definite(exp(-abs(2 * x - 3)), x, -oo, oo) == (1, True)
    assert meijerint_definite(
        exp(-((x - mu) / sigma)**2 / 2) / sqrt(2 * pi * sigma**2), x, -oo,
        oo) == (1, True)
    assert meijerint_definite(sinc(x)**2, x, -oo, oo) == (pi, True)

    # Test one of the extra conditions for 2 g-functinos
    assert meijerint_definite(exp(-x) * sin(x), x, 0, oo) == (S.Half, True)

    # Test a bug
    def res(n):
        return (1 / (1 + x**2)).diff(x, n).subs(x, 1) * (-1)**n

    for n in range(6):
        assert integrate(exp(-x)*sin(x)*x**n, (x, 0, oo), meijerg=True) == \
            res(n)

    # This used to test trigexpand... now it is done by linear substitution
    assert simplify(integrate(exp(-x) * sin(x + a), (x, 0, oo),
                              meijerg=True)) == sqrt(2) * sin(a + pi / 4) / 2

    # Test the condition 14 from prudnikov.
    # (This is besselj*besselj in disguise, to stop the product from being
    #  recognised in the tables.)
    a, b, s = symbols('a b s')
    from sympy.functions.elementary.complexes import re
    assert meijerint_definite(
        meijerg([], [], [a / 2], [-a / 2], x / 4) *
        meijerg([], [], [b / 2], [-b / 2], x / 4) * x**(s - 1), x, 0,
        oo) == ((4 * 2**(2 * s - 2) * gamma(-2 * s + 1) *
                 gamma(a / 2 + b / 2 + s) /
                 (gamma(-a / 2 + b / 2 - s + 1) *
                  gamma(a / 2 - b / 2 - s + 1) * gamma(a / 2 + b / 2 - s + 1)),
                 (re(s) < 1) & (re(s) < S(1) / 2) &
                 (re(a) / 2 + re(b) / 2 + re(s) > 0)))

    # test a bug
    assert integrate(sin(x**a)*sin(x**b), (x, 0, oo), meijerg=True) == \
        Integral(sin(x**a)*sin(x**b), (x, 0, oo))

    # test better hyperexpand
    assert integrate(exp(-x**2)*log(x), (x, 0, oo), meijerg=True) == \
        (sqrt(pi)*polygamma(0, S.Half)/4).expand()

    # Test hyperexpand bug.
    from sympy.functions.special.gamma_functions import lowergamma
    n = symbols('n', integer=True)
    assert simplify(integrate(exp(-x)*x**n, x, meijerg=True)) == \
        lowergamma(n + 1, x)

    # Test a bug with argument 1/x
    alpha = symbols('alpha', positive=True)
    assert meijerint_definite((2 - x)**alpha*sin(alpha/x), x, 0, 2) == \
        (sqrt(pi)*alpha*gamma(alpha + 1)*meijerg(((), (alpha/2 + S.Half,
        alpha/2 + 1)), ((0, 0, S.Half), (Rational(-1, 2),)), alpha**2/16)/4, True)

    # test a bug related to 3016
    a, s = symbols('a s', positive=True)
    assert simplify(integrate(x**s*exp(-a*x**2), (x, -oo, oo))) == \
        a**(-s/2 - S.Half)*((-1)**s + 1)*gamma(s/2 + S.Half)/2
示例#20
0
文件: numbers.py 项目: Zulko/sympy
 def _eval_rewrite_as_polygamma(self, n, m=1):
     from sympy.functions.special.gamma_functions import polygamma
     return S.NegativeOne**m/factorial(m - 1) * (polygamma(m - 1, 1) - polygamma(m - 1, n + 1))
示例#21
0
def test_gamma():
    assert gamma(nan) is nan
    assert gamma(oo) is oo

    assert gamma(-100) is zoo
    assert gamma(0) is zoo
    assert gamma(-100.0) is zoo

    assert gamma(1) == 1
    assert gamma(2) == 1
    assert gamma(3) == 2

    assert gamma(102) == factorial(101)

    assert gamma(S.Half) == sqrt(pi)

    assert gamma(Rational(3, 2)) == sqrt(pi)*S.Half
    assert gamma(Rational(5, 2)) == sqrt(pi)*Rational(3, 4)
    assert gamma(Rational(7, 2)) == sqrt(pi)*Rational(15, 8)

    assert gamma(Rational(-1, 2)) == -2*sqrt(pi)
    assert gamma(Rational(-3, 2)) == sqrt(pi)*Rational(4, 3)
    assert gamma(Rational(-5, 2)) == sqrt(pi)*Rational(-8, 15)

    assert gamma(Rational(-15, 2)) == sqrt(pi)*Rational(256, 2027025)

    assert gamma(Rational(
        -11, 8)).expand(func=True) == Rational(64, 33)*gamma(Rational(5, 8))
    assert gamma(Rational(
        -10, 3)).expand(func=True) == Rational(81, 280)*gamma(Rational(2, 3))
    assert gamma(Rational(
        14, 3)).expand(func=True) == Rational(880, 81)*gamma(Rational(2, 3))
    assert gamma(Rational(
        17, 7)).expand(func=True) == Rational(30, 49)*gamma(Rational(3, 7))
    assert gamma(Rational(
        19, 8)).expand(func=True) == Rational(33, 64)*gamma(Rational(3, 8))

    assert gamma(x).diff(x) == gamma(x)*polygamma(0, x)

    assert gamma(x - 1).expand(func=True) == gamma(x)/(x - 1)
    assert gamma(x + 2).expand(func=True, mul=False) == x*(x + 1)*gamma(x)

    assert conjugate(gamma(x)) == gamma(conjugate(x))

    assert expand_func(gamma(x + Rational(3, 2))) == \
        (x + S.Half)*gamma(x + S.Half)

    assert expand_func(gamma(x - S.Half)) == \
        gamma(S.Half + x)/(x - S.Half)

    # Test a bug:
    assert expand_func(gamma(x + Rational(3, 4))) == gamma(x + Rational(3, 4))

    # XXX: Not sure about these tests. I can fix them by defining e.g.
    # exp_polar.is_integer but I'm not sure if that makes sense.
    assert gamma(3*exp_polar(I*pi)/4).is_nonnegative is False
    assert gamma(3*exp_polar(I*pi)/4).is_extended_nonpositive is True

    y = Symbol('y', nonpositive=True, integer=True)
    assert gamma(y).is_real == False
    y = Symbol('y', positive=True, noninteger=True)
    assert gamma(y).is_real == True

    assert gamma(-1.0, evaluate=False).is_real == False
    assert gamma(0, evaluate=False).is_real == False
    assert gamma(-2, evaluate=False).is_real == False
示例#22
0
def test_polygamma_expand_func():
    assert polygamma(0, x).expand(func=True) == polygamma(0, x)
    assert polygamma(0, 2*x).expand(func=True) == \
        polygamma(0, x)/2 + polygamma(0, S.Half + x)/2 + log(2)
    assert polygamma(1, 2*x).expand(func=True) == \
        polygamma(1, x)/4 + polygamma(1, S.Half + x)/4
    assert polygamma(2, x).expand(func=True) == \
        polygamma(2, x)
    assert polygamma(0, -1 + x).expand(func=True) == \
        polygamma(0, x) - 1/(x - 1)
    assert polygamma(0, 1 + x).expand(func=True) == \
        1/x + polygamma(0, x )
    assert polygamma(0, 2 + x).expand(func=True) == \
        1/x + 1/(1 + x) + polygamma(0, x)
    assert polygamma(0, 3 + x).expand(func=True) == \
        polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x)
    assert polygamma(0, 4 + x).expand(func=True) == \
        polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x) + 1/(3 + x)
    assert polygamma(1, 1 + x).expand(func=True) == \
        polygamma(1, x) - 1/x**2
    assert polygamma(1, 2 + x).expand(func=True, multinomial=False) == \
        polygamma(1, x) - 1/x**2 - 1/(1 + x)**2
    assert polygamma(1, 3 + x).expand(func=True, multinomial=False) == \
        polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - 1/(2 + x)**2
    assert polygamma(1, 4 + x).expand(func=True, multinomial=False) == \
        polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - \
        1/(2 + x)**2 - 1/(3 + x)**2
    assert polygamma(0, x + y).expand(func=True) == \
        polygamma(0, x + y)
    assert polygamma(1, x + y).expand(func=True) == \
        polygamma(1, x + y)
    assert polygamma(1, 3 + 4*x + y).expand(func=True, multinomial=False) == \
        polygamma(1, y + 4*x) - 1/(y + 4*x)**2 - \
        1/(1 + y + 4*x)**2 - 1/(2 + y + 4*x)**2
    assert polygamma(3, 3 + 4*x + y).expand(func=True, multinomial=False) == \
        polygamma(3, y + 4*x) - 6/(y + 4*x)**4 - \
        6/(1 + y + 4*x)**4 - 6/(2 + y + 4*x)**4
    assert polygamma(3, 4*x + y + 1).expand(func=True, multinomial=False) == \
        polygamma(3, y + 4*x) - 6/(y + 4*x)**4
    e = polygamma(3, 4*x + y + Rational(3, 2))
    assert e.expand(func=True) == e
    e = polygamma(3, x + y + Rational(3, 4))
    assert e.expand(func=True, basic=False) == e
示例#23
0
def test_loggamma():
    raises(TypeError, lambda: loggamma(2, 3))
    raises(ArgumentIndexError, lambda: loggamma(x).fdiff(2))

    assert loggamma(-1) is oo
    assert loggamma(-2) is oo
    assert loggamma(0) is oo
    assert loggamma(1) == 0
    assert loggamma(2) == 0
    assert loggamma(3) == log(2)
    assert loggamma(4) == log(6)

    n = Symbol("n", integer=True, positive=True)
    assert loggamma(n) == log(gamma(n))
    assert loggamma(-n) is oo
    assert loggamma(n/2) == log(2**(-n + 1)*sqrt(pi)*gamma(n)/gamma(n/2 + S.Half))

    assert loggamma(oo) is oo
    assert loggamma(-oo) is zoo
    assert loggamma(I*oo) is zoo
    assert loggamma(-I*oo) is zoo
    assert loggamma(zoo) is zoo
    assert loggamma(nan) is nan

    L = loggamma(Rational(16, 3))
    E = -5*log(3) + loggamma(Rational(1, 3)) + log(4) + log(7) + log(10) + log(13)
    assert expand_func(L).doit() == E
    assert L.n() == E.n()

    L = loggamma(Rational(19, 4))
    E = -4*log(4) + loggamma(Rational(3, 4)) + log(3) + log(7) + log(11) + log(15)
    assert expand_func(L).doit() == E
    assert L.n() == E.n()

    L = loggamma(Rational(23, 7))
    E = -3*log(7) + log(2) + loggamma(Rational(2, 7)) + log(9) + log(16)
    assert expand_func(L).doit() == E
    assert L.n() == E.n()

    L = loggamma(Rational(19, 4) - 7)
    E = -log(9) - log(5) + loggamma(Rational(3, 4)) + 3*log(4) - 3*I*pi
    assert expand_func(L).doit() == E
    assert L.n() == E.n()

    L = loggamma(Rational(23, 7) - 6)
    E = -log(19) - log(12) - log(5) + loggamma(Rational(2, 7)) + 3*log(7) - 3*I*pi
    assert expand_func(L).doit() == E
    assert L.n() == E.n()

    assert loggamma(x).diff(x) == polygamma(0, x)
    s1 = loggamma(1/(x + sin(x)) + cos(x)).nseries(x, n=4)
    s2 = (-log(2*x) - 1)/(2*x) - log(x/pi)/2 + (4 - log(2*x))*x/24 + O(x**2) + \
        log(x)*x**2/2
    assert (s1 - s2).expand(force=True).removeO() == 0
    s1 = loggamma(1/x).series(x)
    s2 = (1/x - S.Half)*log(1/x) - 1/x + log(2*pi)/2 + \
        x/12 - x**3/360 + x**5/1260 + O(x**7)
    assert ((s1 - s2).expand(force=True)).removeO() == 0

    assert loggamma(x).rewrite('intractable') == log(gamma(x))

    s1 = loggamma(x).series(x).cancel()
    assert s1 == -log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + \
        pi**4*x**4/360 + x**5*polygamma(4, 1)/120 + O(x**6)
    assert s1 == loggamma(x).rewrite('intractable').series(x).cancel()

    assert conjugate(loggamma(x)) == loggamma(conjugate(x))
    assert conjugate(loggamma(0)) is oo
    assert conjugate(loggamma(1)) == loggamma(conjugate(1))
    assert conjugate(loggamma(-oo)) == conjugate(zoo)

    assert loggamma(Symbol('v', positive=True)).is_real is True
    assert loggamma(Symbol('v', zero=True)).is_real is False
    assert loggamma(Symbol('v', negative=True)).is_real is False
    assert loggamma(Symbol('v', nonpositive=True)).is_real is False
    assert loggamma(Symbol('v', nonnegative=True)).is_real is None
    assert loggamma(Symbol('v', imaginary=True)).is_real is None
    assert loggamma(Symbol('v', real=True)).is_real is None
    assert loggamma(Symbol('v')).is_real is None

    assert loggamma(S.Half).is_real is True
    assert loggamma(0).is_real is False
    assert loggamma(Rational(-1, 2)).is_real is False
    assert loggamma(I).is_real is None
    assert loggamma(2 + 3*I).is_real is None

    def tN(N, M):
        assert loggamma(1/x)._eval_nseries(x, n=N).getn() == M
    tN(0, 0)
    tN(1, 1)
    tN(2, 2)
    tN(3, 3)
    tN(4, 4)
    tN(5, 5)
示例#24
0
def test_sympy__functions__special__gamma_functions__polygamma():
    from sympy.functions.special.gamma_functions import polygamma
    assert _test_args(polygamma(x, 2))
示例#25
0
 def fdiff(self, argindex=1):
     from sympy.functions.special.gamma_functions import (gamma, polygamma)
     if argindex == 1:
         return gamma(self.args[0] + 1) * polygamma(0, self.args[0] + 1)
     else:
         raise ArgumentIndexError(self, argindex)
示例#26
0
def test_polygamma():
    assert polygamma(n, nan) is nan

    assert polygamma(0, oo) is oo
    assert polygamma(0, -oo) is oo
    assert polygamma(0, I*oo) is oo
    assert polygamma(0, -I*oo) is oo
    assert polygamma(1, oo) == 0
    assert polygamma(5, oo) == 0

    assert polygamma(0, -9) is zoo

    assert polygamma(0, -9) is zoo
    assert polygamma(0, -1) is zoo

    assert polygamma(0, 0) is zoo

    assert polygamma(0, 1) == -EulerGamma
    assert polygamma(0, 7) == Rational(49, 20) - EulerGamma

    assert polygamma(1, 1) == pi**2/6
    assert polygamma(1, 2) == pi**2/6 - 1
    assert polygamma(1, 3) == pi**2/6 - Rational(5, 4)
    assert polygamma(3, 1) == pi**4 / 15
    assert polygamma(3, 5) == 6*(Rational(-22369, 20736) + pi**4/90)
    assert polygamma(5, 1) == 8 * pi**6 / 63

    assert polygamma(1, S.Half) == pi**2 / 2
    assert polygamma(2, S.Half) == -14*zeta(3)
    assert polygamma(11, S.Half) == 176896*pi**12

    def t(m, n):
        x = S(m)/n
        r = polygamma(0, x)
        if r.has(polygamma):
            return False
        return abs(polygamma(0, x.n()).n() - r.n()).n() < 1e-10
    assert t(1, 2)
    assert t(3, 2)
    assert t(-1, 2)
    assert t(1, 4)
    assert t(-3, 4)
    assert t(1, 3)
    assert t(4, 3)
    assert t(3, 4)
    assert t(2, 3)
    assert t(123, 5)

    assert polygamma(0, x).rewrite(zeta) == polygamma(0, x)
    assert polygamma(1, x).rewrite(zeta) == zeta(2, x)
    assert polygamma(2, x).rewrite(zeta) == -2*zeta(3, x)
    assert polygamma(I, 2).rewrite(zeta) == polygamma(I, 2)
    n1 = Symbol('n1')
    n2 = Symbol('n2', real=True)
    n3 = Symbol('n3', integer=True)
    n4 = Symbol('n4', positive=True)
    n5 = Symbol('n5', positive=True, integer=True)
    assert polygamma(n1, x).rewrite(zeta) == polygamma(n1, x)
    assert polygamma(n2, x).rewrite(zeta) == polygamma(n2, x)
    assert polygamma(n3, x).rewrite(zeta) == polygamma(n3, x)
    assert polygamma(n4, x).rewrite(zeta) == polygamma(n4, x)
    assert polygamma(n5, x).rewrite(zeta) == (-1)**(n5 + 1) * factorial(n5) * zeta(n5 + 1, x)

    assert polygamma(3, 7*x).diff(x) == 7*polygamma(4, 7*x)

    assert polygamma(0, x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma
    assert polygamma(2, x).rewrite(harmonic) == 2*harmonic(x - 1, 3) - 2*zeta(3)
    ni = Symbol("n", integer=True)
    assert polygamma(ni, x).rewrite(harmonic) == (-1)**(ni + 1)*(-harmonic(x - 1, ni + 1)
                                                                 + zeta(ni + 1))*factorial(ni)

    # Polygamma of non-negative integer order is unbranched:
    k = Symbol('n', integer=True, nonnegative=True)
    assert polygamma(k, exp_polar(2*I*pi)*x) == polygamma(k, x)

    # but negative integers are branched!
    k = Symbol('n', integer=True)
    assert polygamma(k, exp_polar(2*I*pi)*x).args == (k, exp_polar(2*I*pi)*x)

    # Polygamma of order -1 is loggamma:
    assert polygamma(-1, x) == loggamma(x)

    # But smaller orders are iterated integrals and don't have a special name
    assert polygamma(-2, x).func is polygamma

    # Test a bug
    assert polygamma(0, -x).expand(func=True) == polygamma(0, -x)

    assert polygamma(2, 2.5).is_positive == False
    assert polygamma(2, -2.5).is_positive == False
    assert polygamma(3, 2.5).is_positive == True
    assert polygamma(3, -2.5).is_positive is True
    assert polygamma(-2, -2.5).is_positive is None
    assert polygamma(-3, -2.5).is_positive is None

    assert polygamma(2, 2.5).is_negative == True
    assert polygamma(3, 2.5).is_negative == False
    assert polygamma(3, -2.5).is_negative == False
    assert polygamma(2, -2.5).is_negative is True
    assert polygamma(-2, -2.5).is_negative is None
    assert polygamma(-3, -2.5).is_negative is None

    assert polygamma(I, 2).is_positive is None
    assert polygamma(I, 3).is_negative is None

    # issue 17350
    assert polygamma(pi, 3).evalf() == polygamma(pi, 3)
    assert (I*polygamma(I, pi)).as_real_imag() == \
           (-im(polygamma(I, pi)), re(polygamma(I, pi)))
    assert (tanh(polygamma(I, 1))).rewrite(exp) == \
           (exp(polygamma(I, 1)) - exp(-polygamma(I, 1)))/(exp(polygamma(I, 1)) + exp(-polygamma(I, 1)))
    assert (I / polygamma(I, 4)).rewrite(exp) == \
           I*sqrt(re(polygamma(I, 4))**2 + im(polygamma(I, 4))**2)\
           /((re(polygamma(I, 4)) + I*im(polygamma(I, 4)))*Abs(polygamma(I, 4)))
    assert unchanged(polygamma, 2.3, 1.0)

    # issue 12569
    assert unchanged(im, polygamma(0, I))
    assert polygamma(Symbol('a', positive=True), Symbol('b', positive=True)).is_real is True
    assert polygamma(0, I).is_real is None
示例#27
0
 def t(m, n):
     x = S(m)/n
     r = polygamma(0, x)
     if r.has(polygamma):
         return False
     return abs(polygamma(0, x.n()).n() - r.n()).n() < 1e-10
示例#28
0
def test_factorial_simplify_fail():
    # simplify(factorial(x + 1).diff(x) - ((x + 1)*factorial(x)).diff(x))) == 0
    from sympy.abc import x
    assert simplify(x * polygamma(0, x + 1) - x * polygamma(0, x + 2) +
                    polygamma(0, x + 1) - polygamma(0, x + 2) + 1) == 0
示例#29
0
文件: test_args.py 项目: 101man/sympy
def test_sympy__functions__special__gamma_functions__polygamma():
    from sympy.functions.special.gamma_functions import polygamma
    assert _test_args(polygamma(x, 2))
示例#30
0
def test_probability():
    # various integrals from probability theory
    from sympy.core.function import expand_mul
    from sympy.core.symbol import (Symbol, symbols)
    from sympy.functions.elementary.complexes import Abs
    from sympy.simplify.gammasimp import gammasimp
    from sympy.simplify.powsimp import powsimp
    mu1, mu2 = symbols('mu1 mu2', nonzero=True)
    sigma1, sigma2 = symbols('sigma1 sigma2', positive=True)
    rate = Symbol('lambda', positive=True)

    def normal(x, mu, sigma):
        return 1 / sqrt(2 * pi * sigma**2) * exp(-(x - mu)**2 / 2 / sigma**2)

    def exponential(x, rate):
        return rate * exp(-rate * x)

    assert integrate(normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == 1
    assert integrate(x*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == \
        mu1
    assert integrate(x**2*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
        == mu1**2 + sigma1**2
    assert integrate(x**3*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
        == mu1**3 + 3*mu1*sigma1**2
    assert integrate(normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo),
                     meijerg=True) == 1
    assert integrate(x * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo),
                     meijerg=True) == mu1
    assert integrate(y * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo),
                     meijerg=True) == mu2
    assert integrate(x * y * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo),
                     meijerg=True) == mu1 * mu2
    assert integrate(
        (x + y + 1) * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
        (x, -oo, oo), (y, -oo, oo),
        meijerg=True) == 1 + mu1 + mu2
    assert integrate((x + y - 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == \
        -1 + mu1 + mu2

    i = integrate(x**2 * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                  (x, -oo, oo), (y, -oo, oo),
                  meijerg=True)
    assert not i.has(Abs)
    assert simplify(i) == mu1**2 + sigma1**2
    assert integrate(y**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == \
        sigma2**2 + mu2**2

    assert integrate(exponential(x, rate), (x, 0, oo), meijerg=True) == 1
    assert integrate(x*exponential(x, rate), (x, 0, oo), meijerg=True) == \
        1/rate
    assert integrate(x**2*exponential(x, rate), (x, 0, oo), meijerg=True) == \
        2/rate**2

    def E(expr):
        res1 = integrate(expr * exponential(x, rate) * normal(y, mu1, sigma1),
                         (x, 0, oo), (y, -oo, oo),
                         meijerg=True)
        res2 = integrate(expr * exponential(x, rate) * normal(y, mu1, sigma1),
                         (y, -oo, oo), (x, 0, oo),
                         meijerg=True)
        assert expand_mul(res1) == expand_mul(res2)
        return res1

    assert E(1) == 1
    assert E(x * y) == mu1 / rate
    assert E(x * y**2) == mu1**2 / rate + sigma1**2 / rate
    ans = sigma1**2 + 1 / rate**2
    assert simplify(E((x + y + 1)**2) - E(x + y + 1)**2) == ans
    assert simplify(E((x + y - 1)**2) - E(x + y - 1)**2) == ans
    assert simplify(E((x + y)**2) - E(x + y)**2) == ans

    # Beta' distribution
    alpha, beta = symbols('alpha beta', positive=True)
    betadist = x**(alpha - 1)*(1 + x)**(-alpha - beta)*gamma(alpha + beta) \
        /gamma(alpha)/gamma(beta)
    assert integrate(betadist, (x, 0, oo), meijerg=True) == 1
    i = integrate(x * betadist, (x, 0, oo), meijerg=True, conds='separate')
    assert (gammasimp(i[0]), i[1]) == (alpha / (beta - 1), 1 < beta)
    j = integrate(x**2 * betadist, (x, 0, oo), meijerg=True, conds='separate')
    assert j[1] == (beta > 2)
    assert gammasimp(j[0] - i[0]**2) == (alpha + beta - 1)*alpha \
        /(beta - 2)/(beta - 1)**2

    # Beta distribution
    # NOTE: this is evaluated using antiderivatives. It also tests that
    #       meijerint_indefinite returns the simplest possible answer.
    a, b = symbols('a b', positive=True)
    betadist = x**(a - 1) * (-x + 1)**(b - 1) * gamma(a + b) / (gamma(a) *
                                                                gamma(b))
    assert simplify(integrate(betadist, (x, 0, 1), meijerg=True)) == 1
    assert simplify(integrate(x*betadist, (x, 0, 1), meijerg=True)) == \
        a/(a + b)
    assert simplify(integrate(x**2*betadist, (x, 0, 1), meijerg=True)) == \
        a*(a + 1)/(a + b)/(a + b + 1)
    assert simplify(integrate(x**y*betadist, (x, 0, 1), meijerg=True)) == \
        gamma(a + b)*gamma(a + y)/gamma(a)/gamma(a + b + y)

    # Chi distribution
    k = Symbol('k', integer=True, positive=True)
    chi = 2**(1 - k / 2) * x**(k - 1) * exp(-x**2 / 2) / gamma(k / 2)
    assert powsimp(integrate(chi, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x*chi, (x, 0, oo), meijerg=True)) == \
        sqrt(2)*gamma((k + 1)/2)/gamma(k/2)
    assert simplify(integrate(x**2 * chi, (x, 0, oo), meijerg=True)) == k

    # Chi^2 distribution
    chisquared = 2**(-k / 2) / gamma(k / 2) * x**(k / 2 - 1) * exp(-x / 2)
    assert powsimp(integrate(chisquared, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x * chisquared, (x, 0, oo), meijerg=True)) == k
    assert simplify(integrate(x**2*chisquared, (x, 0, oo), meijerg=True)) == \
        k*(k + 2)
    assert gammasimp(
        integrate(((x - k) / sqrt(2 * k))**3 * chisquared, (x, 0, oo),
                  meijerg=True)) == 2 * sqrt(2) / sqrt(k)

    # Dagum distribution
    a, b, p = symbols('a b p', positive=True)
    # XXX (x/b)**a does not work
    dagum = a * p / x * (x / b)**(a * p) / (1 + x**a / b**a)**(p + 1)
    assert simplify(integrate(dagum, (x, 0, oo), meijerg=True)) == 1
    # XXX conditions are a mess
    arg = x * dagum
    assert simplify(integrate(
        arg, (x, 0, oo), meijerg=True,
        conds='none')) == a * b * gamma(1 - 1 / a) * gamma(p + 1 + 1 / a) / (
            (a * p + 1) * gamma(p))
    assert simplify(integrate(
        x * arg, (x, 0, oo), meijerg=True,
        conds='none')) == a * b**2 * gamma(1 -
                                           2 / a) * gamma(p + 1 + 2 / a) / (
                                               (a * p + 2) * gamma(p))

    # F-distribution
    d1, d2 = symbols('d1 d2', positive=True)
    f = sqrt(((d1*x)**d1 * d2**d2)/(d1*x + d2)**(d1 + d2))/x \
        /gamma(d1/2)/gamma(d2/2)*gamma((d1 + d2)/2)
    assert simplify(integrate(f, (x, 0, oo), meijerg=True)) == 1
    # TODO conditions are a mess
    assert simplify(integrate(x * f, (x, 0, oo), meijerg=True,
                              conds='none')) == d2 / (d2 - 2)
    assert simplify(
        integrate(x**2 * f, (x, 0, oo), meijerg=True,
                  conds='none')) == d2**2 * (d1 + 2) / d1 / (d2 - 4) / (d2 - 2)

    # TODO gamma, rayleigh

    # inverse gaussian
    lamda, mu = symbols('lamda mu', positive=True)
    dist = sqrt(lamda / 2 / pi) * x**(Rational(-3, 2)) * exp(
        -lamda * (x - mu)**2 / x / 2 / mu**2)
    mysimp = lambda expr: simplify(expr.rewrite(exp))
    assert mysimp(integrate(dist, (x, 0, oo))) == 1
    assert mysimp(integrate(x * dist, (x, 0, oo))) == mu
    assert mysimp(integrate((x - mu)**2 * dist, (x, 0, oo))) == mu**3 / lamda
    assert mysimp(integrate((x - mu)**3 * dist,
                            (x, 0, oo))) == 3 * mu**5 / lamda**2

    # Levi
    c = Symbol('c', positive=True)
    assert integrate(
        sqrt(c / 2 / pi) * exp(-c / 2 / (x - mu)) / (x - mu)**S('3/2'),
        (x, mu, oo)) == 1
    # higher moments oo

    # log-logistic
    alpha, beta = symbols('alpha beta', positive=True)
    distn = (beta/alpha)*x**(beta - 1)/alpha**(beta - 1)/ \
        (1 + x**beta/alpha**beta)**2
    # FIXME: If alpha, beta are not declared as finite the line below hangs
    # after the changes in:
    #    https://github.com/sympy/sympy/pull/16603
    assert simplify(integrate(distn, (x, 0, oo))) == 1
    # NOTE the conditions are a mess, but correctly state beta > 1
    assert simplify(integrate(x*distn, (x, 0, oo), conds='none')) == \
        pi*alpha/beta/sin(pi/beta)
    # (similar comment for conditions applies)
    assert simplify(integrate(x**y*distn, (x, 0, oo), conds='none')) == \
        pi*alpha**y*y/beta/sin(pi*y/beta)

    # weibull
    k = Symbol('k', positive=True)
    n = Symbol('n', positive=True)
    distn = k / lamda * (x / lamda)**(k - 1) * exp(-(x / lamda)**k)
    assert simplify(integrate(distn, (x, 0, oo))) == 1
    assert simplify(integrate(x**n*distn, (x, 0, oo))) == \
        lamda**n*gamma(1 + n/k)

    # rice distribution
    from sympy.functions.special.bessel import besseli
    nu, sigma = symbols('nu sigma', positive=True)
    rice = x / sigma**2 * exp(-(x**2 + nu**2) / 2 / sigma**2) * besseli(
        0, x * nu / sigma**2)
    assert integrate(rice, (x, 0, oo), meijerg=True) == 1
    # can someone verify higher moments?

    # Laplace distribution
    mu = Symbol('mu', real=True)
    b = Symbol('b', positive=True)
    laplace = exp(-abs(x - mu) / b) / 2 / b
    assert integrate(laplace, (x, -oo, oo), meijerg=True) == 1
    assert integrate(x * laplace, (x, -oo, oo), meijerg=True) == mu
    assert integrate(x**2*laplace, (x, -oo, oo), meijerg=True) == \
        2*b**2 + mu**2

    # TODO are there other distributions supported on (-oo, oo) that we can do?

    # misc tests
    k = Symbol('k', positive=True)
    assert gammasimp(
        expand_mul(
            integrate(log(x) * x**(k - 1) * exp(-x) / gamma(k),
                      (x, 0, oo)))) == polygamma(0, k)
示例#31
0
文件: numbers.py 项目: xivarri/sympy
 def fdiff(self, argindex=1):
     from sympy import polygamma, log
     n = self.args[0]
     return catalan(n)*(polygamma(0, n + Rational(1, 2)) - polygamma(0, n + 2) + log(4))