示例#1
0
    def dig(self):
        """ Number of decimal digits that are guaranteed to be preserved in text.

        When converting text -> float -> text, you are guaranteed that at least ``dig``
        number of digits are preserved with respect to rounding or overflow.
        """
        from sympy.functions import floor, log
        return floor(self.nmant * log(2)/log(10))
    def dig(self):
        """ Number of decimal digits that are guaranteed to be preserved in text.

        When converting text -> float -> text, you are guaranteed that at least ``dig``
        number of digits are preserved with respect to rounding or overflow.
        """
        from sympy.functions import floor, log
        return floor(self.nmant * log(2) / log(10))
示例#3
0
def test_Functions():
    assert rust_code(sin(x) ** cos(x)) == "x.sin().powf(x.cos())"
    assert rust_code(abs(x)) == "x.abs()"
    assert rust_code(ceiling(x)) == "x.ceil()"
    assert rust_code(floor(x)) == "x.floor()"

    # Automatic rewrite
    assert rust_code(Mod(x, 3)) == 'x - 3*((1_f64/3.0)*x).floor()'
示例#4
0
def test_C99CodePrinter__precision():
    n = symbols('n', integer=True)
    f32_printer = C99CodePrinter(dict(type_aliases={real: float32}))
    f64_printer = C99CodePrinter(dict(type_aliases={real: float64}))
    f80_printer = C99CodePrinter(dict(type_aliases={real: float80}))
    assert f32_printer.doprint(sin(x+2.1)) == 'sinf(x + 2.1F)'
    assert f64_printer.doprint(sin(x+2.1)) == 'sin(x + 2.1000000000000001)'
    assert f80_printer.doprint(sin(x+Float('2.0'))) == 'sinl(x + 2.0L)'

    for printer, suffix in zip([f32_printer, f64_printer, f80_printer], ['f', '', 'l']):
        def check(expr, ref):
            assert printer.doprint(expr) == ref.format(s=suffix, S=suffix.upper())
        check(Abs(n), 'abs(n)')
        check(Abs(x + 2.0), 'fabs{s}(x + 2.0{S})')
        check(sin(x + 4.0)**cos(x - 2.0), 'pow{s}(sin{s}(x + 4.0{S}), cos{s}(x - 2.0{S}))')
        check(exp(x*8.0), 'exp{s}(8.0{S}*x)')
        check(exp2(x), 'exp2{s}(x)')
        check(expm1(x*4.0), 'expm1{s}(4.0{S}*x)')
        check(Mod(n, 2), '((n) % (2))')
        check(Mod(2*n + 3, 3*n + 5), '((2*n + 3) % (3*n + 5))')
        check(Mod(x + 2.0, 3.0), 'fmod{s}(1.0{S}*x + 2.0{S}, 3.0{S})')
        check(Mod(x, 2.0*x + 3.0), 'fmod{s}(1.0{S}*x, 2.0{S}*x + 3.0{S})')
        check(log(x/2), 'log{s}((1.0{S}/2.0{S})*x)')
        check(log10(3*x/2), 'log10{s}((3.0{S}/2.0{S})*x)')
        check(log2(x*8.0), 'log2{s}(8.0{S}*x)')
        check(log1p(x), 'log1p{s}(x)')
        check(2**x, 'pow{s}(2, x)')
        check(2.0**x, 'pow{s}(2.0{S}, x)')
        check(x**3, 'pow{s}(x, 3)')
        check(x**4.0, 'pow{s}(x, 4.0{S})')
        check(sqrt(3+x), 'sqrt{s}(x + 3)')
        check(Cbrt(x-2.0), 'cbrt{s}(x - 2.0{S})')
        check(hypot(x, y), 'hypot{s}(x, y)')
        check(sin(3.*x + 2.), 'sin{s}(3.0{S}*x + 2.0{S})')
        check(cos(3.*x - 1.), 'cos{s}(3.0{S}*x - 1.0{S})')
        check(tan(4.*y + 2.), 'tan{s}(4.0{S}*y + 2.0{S})')
        check(asin(3.*x + 2.), 'asin{s}(3.0{S}*x + 2.0{S})')
        check(acos(3.*x + 2.), 'acos{s}(3.0{S}*x + 2.0{S})')
        check(atan(3.*x + 2.), 'atan{s}(3.0{S}*x + 2.0{S})')
        check(atan2(3.*x, 2.*y), 'atan2{s}(3.0{S}*x, 2.0{S}*y)')

        check(sinh(3.*x + 2.), 'sinh{s}(3.0{S}*x + 2.0{S})')
        check(cosh(3.*x - 1.), 'cosh{s}(3.0{S}*x - 1.0{S})')
        check(tanh(4.0*y + 2.), 'tanh{s}(4.0{S}*y + 2.0{S})')
        check(asinh(3.*x + 2.), 'asinh{s}(3.0{S}*x + 2.0{S})')
        check(acosh(3.*x + 2.), 'acosh{s}(3.0{S}*x + 2.0{S})')
        check(atanh(3.*x + 2.), 'atanh{s}(3.0{S}*x + 2.0{S})')
        check(erf(42.*x), 'erf{s}(42.0{S}*x)')
        check(erfc(42.*x), 'erfc{s}(42.0{S}*x)')
        check(gamma(x), 'tgamma{s}(x)')
        check(loggamma(x), 'lgamma{s}(x)')

        check(ceiling(x + 2.), "ceil{s}(x + 2.0{S})")
        check(floor(x + 2.), "floor{s}(x + 2.0{S})")
        check(fma(x, y, -z), 'fma{s}(x, y, -z)')
        check(Max(x, 8.0, x**4.0), 'fmax{s}(8.0{S}, fmax{s}(x, pow{s}(x, 4.0{S})))')
        check(Min(x, 2.0), 'fmin{s}(2.0{S}, x)')
示例#5
0
def test_Function():
    assert mcode(sin(x)**cos(x)) == "sin(x).^cos(x)"
    assert mcode(sign(x)) == "sign(x)"
    assert mcode(exp(x)) == "exp(x)"
    assert mcode(log(x)) == "log(x)"
    assert mcode(factorial(x)) == "factorial(x)"
    assert mcode(floor(x)) == "floor(x)"
    assert mcode(atan2(y, x)) == "atan2(y, x)"
    assert mcode(beta(x, y)) == 'beta(x, y)'
    assert mcode(polylog(x, y)) == 'polylog(x, y)'
    assert mcode(harmonic(x)) == 'harmonic(x)'
    assert mcode(bernoulli(x)) == "bernoulli(x)"
    assert mcode(bernoulli(x, y)) == "bernoulli(x, y)"
示例#6
0
def test_Function():
    assert mcode(sin(x) ** cos(x)) == "sin(x).^cos(x)"
    assert mcode(sign(x)) == "sign(x)"
    assert mcode(exp(x)) == "exp(x)"
    assert mcode(log(x)) == "log(x)"
    assert mcode(factorial(x)) == "factorial(x)"
    assert mcode(floor(x)) == "floor(x)"
    assert mcode(atan2(y, x)) == "atan2(y, x)"
    assert mcode(beta(x, y)) == 'beta(x, y)'
    assert mcode(polylog(x, y)) == 'polylog(x, y)'
    assert mcode(harmonic(x)) == 'harmonic(x)'
    assert mcode(bernoulli(x)) == "bernoulli(x)"
    assert mcode(bernoulli(x, y)) == "bernoulli(x, y)"
def continued_fraction_iterator(x):
    """
    Return continued fraction expansion of x as iterator.

    Examples
    ========

    >>> from sympy.core import Rational, pi
    >>> from sympy.ntheory.continued_fraction import continued_fraction_iterator

    >>> list(continued_fraction_iterator(Rational(3, 8)))
    [0, 2, 1, 2]
    >>> list(continued_fraction_iterator(Rational(-3, 8)))
    [-1, 1, 1, 1, 2]

    >>> for i, v in enumerate(continued_fraction_iterator(pi)):
    ...     if i > 7:
    ...         break
    ...     print(v)
    3
    7
    15
    1
    292
    1
    1
    1

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Continued_fraction

    """
    from sympy.functions import floor

    while True:
        i = floor(x)
        yield i
        x -= i
        if not x:
            break
        x = 1/x
示例#8
0
def test_C99CodePrinter__precision():
    n = symbols("n", integer=True)
    f32_printer = C99CodePrinter(dict(type_aliases={real: float32}))
    f64_printer = C99CodePrinter(dict(type_aliases={real: float64}))
    f80_printer = C99CodePrinter(dict(type_aliases={real: float80}))
    assert f32_printer.doprint(sin(x + 2.1)) == "sinf(x + 2.1F)"
    assert f64_printer.doprint(sin(x + 2.1)) == "sin(x + 2.1000000000000001)"
    assert f80_printer.doprint(sin(x + Float("2.0"))) == "sinl(x + 2.0L)"

    for printer, suffix in zip([f32_printer, f64_printer, f80_printer], ["f", "", "l"]):

        def check(expr, ref):
            assert printer.doprint(expr) == ref.format(s=suffix, S=suffix.upper())

        check(Abs(n), "abs(n)")
        check(Abs(x + 2.0), "fabs{s}(x + 2.0{S})")
        check(
            sin(x + 4.0) ** cos(x - 2.0),
            "pow{s}(sin{s}(x + 4.0{S}), cos{s}(x - 2.0{S}))",
        )
        check(exp(x * 8.0), "exp{s}(8.0{S}*x)")
        check(exp2(x), "exp2{s}(x)")
        check(expm1(x * 4.0), "expm1{s}(4.0{S}*x)")
        check(Mod(n, 2), "((n) % (2))")
        check(Mod(2 * n + 3, 3 * n + 5), "((2*n + 3) % (3*n + 5))")
        check(Mod(x + 2.0, 3.0), "fmod{s}(1.0{S}*x + 2.0{S}, 3.0{S})")
        check(Mod(x, 2.0 * x + 3.0), "fmod{s}(1.0{S}*x, 2.0{S}*x + 3.0{S})")
        check(log(x / 2), "log{s}((1.0{S}/2.0{S})*x)")
        check(log10(3 * x / 2), "log10{s}((3.0{S}/2.0{S})*x)")
        check(log2(x * 8.0), "log2{s}(8.0{S}*x)")
        check(log1p(x), "log1p{s}(x)")
        check(2 ** x, "pow{s}(2, x)")
        check(2.0 ** x, "pow{s}(2.0{S}, x)")
        check(x ** 3, "pow{s}(x, 3)")
        check(x ** 4.0, "pow{s}(x, 4.0{S})")
        check(sqrt(3 + x), "sqrt{s}(x + 3)")
        check(Cbrt(x - 2.0), "cbrt{s}(x - 2.0{S})")
        check(hypot(x, y), "hypot{s}(x, y)")
        check(sin(3.0 * x + 2.0), "sin{s}(3.0{S}*x + 2.0{S})")
        check(cos(3.0 * x - 1.0), "cos{s}(3.0{S}*x - 1.0{S})")
        check(tan(4.0 * y + 2.0), "tan{s}(4.0{S}*y + 2.0{S})")
        check(asin(3.0 * x + 2.0), "asin{s}(3.0{S}*x + 2.0{S})")
        check(acos(3.0 * x + 2.0), "acos{s}(3.0{S}*x + 2.0{S})")
        check(atan(3.0 * x + 2.0), "atan{s}(3.0{S}*x + 2.0{S})")
        check(atan2(3.0 * x, 2.0 * y), "atan2{s}(3.0{S}*x, 2.0{S}*y)")

        check(sinh(3.0 * x + 2.0), "sinh{s}(3.0{S}*x + 2.0{S})")
        check(cosh(3.0 * x - 1.0), "cosh{s}(3.0{S}*x - 1.0{S})")
        check(tanh(4.0 * y + 2.0), "tanh{s}(4.0{S}*y + 2.0{S})")
        check(asinh(3.0 * x + 2.0), "asinh{s}(3.0{S}*x + 2.0{S})")
        check(acosh(3.0 * x + 2.0), "acosh{s}(3.0{S}*x + 2.0{S})")
        check(atanh(3.0 * x + 2.0), "atanh{s}(3.0{S}*x + 2.0{S})")
        check(erf(42.0 * x), "erf{s}(42.0{S}*x)")
        check(erfc(42.0 * x), "erfc{s}(42.0{S}*x)")
        check(gamma(x), "tgamma{s}(x)")
        check(loggamma(x), "lgamma{s}(x)")

        check(ceiling(x + 2.0), "ceil{s}(x + 2.0{S})")
        check(floor(x + 2.0), "floor{s}(x + 2.0{S})")
        check(fma(x, y, -z), "fma{s}(x, y, -z)")
        check(Max(x, 8.0, x ** 4.0), "fmax{s}(8.0{S}, fmax{s}(x, pow{s}(x, 4.0{S})))")
        check(Min(x, 2.0), "fmin{s}(2.0{S}, x)")
示例#9
0
def test_torch_math():
    if not torch:
        skip("Torch not installed")

    ma = torch.tensor([[1, 2, -3, -4]])

    expr = Abs(x)
    assert torch_code(expr) == "torch.abs(x)"
    f = lambdify(x, expr, 'torch')
    y = f(ma)
    c = torch.abs(ma)
    assert (y == c).all()

    expr = sign(x)
    assert torch_code(expr) == "torch.sign(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.randint(0, 10))

    expr = ceiling(x)
    assert torch_code(expr) == "torch.ceil(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.random())

    expr = floor(x)
    assert torch_code(expr) == "torch.floor(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.random())

    expr = exp(x)
    assert torch_code(expr) == "torch.exp(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.random())

    # expr = sqrt(x)
    # assert torch_code(expr) == "torch.sqrt(x)"
    # _compare_torch_scalar((x,), expr, rng=lambda: random.random())

    # expr = x ** 4
    # assert torch_code(expr) == "torch.pow(x, 4)"
    # _compare_torch_scalar((x,), expr, rng=lambda: random.random())

    expr = cos(x)
    assert torch_code(expr) == "torch.cos(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.random())

    expr = acos(x)
    assert torch_code(expr) == "torch.acos(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(0, 0.95))

    expr = sin(x)
    assert torch_code(expr) == "torch.sin(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.random())

    expr = asin(x)
    assert torch_code(expr) == "torch.asin(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.random())

    expr = tan(x)
    assert torch_code(expr) == "torch.tan(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.random())

    expr = atan(x)
    assert torch_code(expr) == "torch.atan(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.random())

    # expr = atan2(y, x)
    # assert torch_code(expr) == "torch.atan2(y, x)"
    # _compare_torch_scalar((y, x), expr, rng=lambda: random.random())

    expr = cosh(x)
    assert torch_code(expr) == "torch.cosh(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.random())

    expr = acosh(x)
    assert torch_code(expr) == "torch.acosh(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(1, 2))

    expr = sinh(x)
    assert torch_code(expr) == "torch.sinh(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(1, 2))

    expr = asinh(x)
    assert torch_code(expr) == "torch.asinh(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(1, 2))

    expr = tanh(x)
    assert torch_code(expr) == "torch.tanh(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(1, 2))

    expr = atanh(x)
    assert torch_code(expr) == "torch.atanh(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(-.5, .5))

    expr = erf(x)
    assert torch_code(expr) == "torch.erf(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.random())

    expr = loggamma(x)
    assert torch_code(expr) == "torch.lgamma(x)"
    _compare_torch_scalar((x, ), expr, rng=lambda: random.random())