示例#1
0
def _add_splines(c, b1, d, b2, x):
    """Construct c*b1 + d*b2."""

    if S.Zero in (b1, c):
        rv = piecewise_fold(d * b2)
    elif S.Zero in (b2, d):
        rv = piecewise_fold(c * b1)
    else:
        new_args = []
        # Just combining the Piecewise without any fancy optimization
        p1 = piecewise_fold(c * b1)
        p2 = piecewise_fold(d * b2)

        # Search all Piecewise arguments except (0, True)
        p2args = list(p2.args[:-1])

        # This merging algorithm assumes the conditions in
        # p1 and p2 are sorted
        for arg in p1.args[:-1]:
            expr = arg.expr
            cond = arg.cond

            lower = _ivl(cond, x)[0]

            # Check p2 for matching conditions that can be merged
            for i, arg2 in enumerate(p2args):
                expr2 = arg2.expr
                cond2 = arg2.cond

                lower_2, upper_2 = _ivl(cond2, x)
                if cond2 == cond:
                    # Conditions match, join expressions
                    expr += expr2
                    # Remove matching element
                    del p2args[i]
                    # No need to check the rest
                    break
                elif lower_2 < lower and upper_2 <= lower:
                    # Check if arg2 condition smaller than arg1,
                    # add to new_args by itself (no match expected
                    # in p1)
                    new_args.append(arg2)
                    del p2args[i]
                    break

            # Checked all, add expr and cond
            new_args.append((expr, cond))

        # Add remaining items from p2args
        new_args.extend(p2args)

        # Add final (0, True)
        new_args.append((0, True))

        rv = Piecewise(*new_args, evaluate=False)

    return rv.expand()
示例#2
0
def _add_splines(c, b1, d, b2):
    """Construct c*b1 + d*b2."""
    if b1 == S.Zero or c == S.Zero:
        return expand(piecewise_fold(d * b2))
    if b2 == S.Zero or d == S.Zero:
        return expand(piecewise_fold(c * b1))
    new_args = []
    n_intervals = len(b1.args)
    assert n_intervals == len(b2.args)
    new_args.append((expand(c * b1.args[0].expr), b1.args[0].cond))
    for i in range(1, n_intervals - 1):
        new_args.append((expand(c * b1.args[i].expr + d * b2.args[i - 1].expr), b1.args[i].cond))
    new_args.append((expand(d * b2.args[-2].expr), b2.args[-2].cond))
    new_args.append(b2.args[-1])
    return Piecewise(*new_args)
示例#3
0
def _add_splines(c, b1, d, b2):
    """Construct c*b1 + d*b2."""
    if b1 == S.Zero or c == S.Zero:
        return expand(piecewise_fold(d * b2))
    if b2 == S.Zero or d == S.Zero:
        return expand(piecewise_fold(c * b1))
    new_args = []
    n_intervals = len(b1.args)
    assert (n_intervals == len(b2.args))
    new_args.append((expand(c * b1.args[0].expr), b1.args[0].cond))
    for i in range(1, n_intervals - 1):
        new_args.append((expand(c * b1.args[i].expr + d * b2.args[i - 1].expr),
                         b1.args[i].cond))
    new_args.append((expand(d * b2.args[-2].expr), b2.args[-2].cond))
    new_args.append(b2.args[-1])
    return Piecewise(*new_args)
示例#4
0
def _add_splines(c, b1, d, b2):
    """Construct c*b1 + d*b2."""
    if b1 == S.Zero or c == S.Zero:
        rv = piecewise_fold(d * b2)
    elif b2 == S.Zero or d == S.Zero:
        rv = piecewise_fold(c * b1)
    else:
        new_args = []
        n_intervals = len(b1.args)
        if n_intervals != len(b2.args):
            raise ValueError("Args of b1 and b2 are not equal")
        new_args.append((c * b1.args[0].expr, b1.args[0].cond))
        for i in range(1, n_intervals - 1):
            new_args.append((c * b1.args[i].expr + d * b2.args[i - 1].expr,
                             b1.args[i].cond))
        new_args.append((d * b2.args[-2].expr, b2.args[-2].cond))
        new_args.append(b2.args[-1])
        rv = Piecewise(*new_args)

    return rv.expand()
示例#5
0
文件: bsplines.py 项目: vprusso/sympy
def _add_splines(c, b1, d, b2):
    """Construct c*b1 + d*b2."""
    if b1 == S.Zero or c == S.Zero:
        rv = piecewise_fold(d*b2)
    elif b2 == S.Zero or d == S.Zero:
        rv = piecewise_fold(c*b1)
    else:
        new_args = []
        n_intervals = len(b1.args)
        if n_intervals != len(b2.args):
            raise ValueError("Args of b1 and b2 are not equal")
        new_args.append((c*b1.args[0].expr, b1.args[0].cond))
        for i in range(1, n_intervals - 1):
            new_args.append((
                c*b1.args[i].expr + d*b2.args[i - 1].expr,
                b1.args[i].cond
            ))
        new_args.append((d*b2.args[-2].expr, b2.args[-2].cond))
        new_args.append(b2.args[-1])
        rv = Piecewise(*new_args)

    return rv.expand()
示例#6
0
def _simpsol(soleq):
    lhs = soleq.lhs
    sol = soleq.rhs
    sol = powsimp(sol)
    gens = list(sol.atoms(exp))
    p = Poly(sol, *gens, expand=False)
    gens = [factor_terms(g) for g in gens]
    if not gens:
        gens = p.gens
    syms = [Symbol('C1'), Symbol('C2')]
    terms = []
    for coeff, monom in zip(p.coeffs(), p.monoms()):
        coeff = piecewise_fold(coeff)
        if type(coeff) is Piecewise:
            coeff = Piecewise(*((ratsimp(coef).collect(syms), cond) for coef, cond in coeff.args))
        else:
            coeff = ratsimp(coeff).collect(syms)
        monom = Mul(*(g ** i for g, i in zip(gens, monom)))
        terms.append(coeff * monom)
    return Eq(lhs, Add(*terms))
示例#7
0
def test_deltasummation_mul_add_x_kd_add_y_kd():
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, 1, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(S(1) <= i, i <= 3)), (0, True)) + 3 *
        (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, 1, 1)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 1)), (0, True)) + (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, 2, 2)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 2)), (0, True)) + (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, 3, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 3)), (0, True)) + (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, 1, k)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(S(1) <= i, i <= k)), (0, True)) + k *
        (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, k, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(k <= i, i <= 3)), (0, True)) + (4 - k) *
        (KD(i, k) + x) * y)
    assert ds((x + KD(i, k)) * (y + KD(i, j)), (j, k, l)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(k <= i, i <= l)), (0, True)) +
        (l - k + 1) * (KD(i, k) + x) * y)
示例#8
0
def test_deltasummation_mul_add_x_kd_add_y_kd():
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 1, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(S(1) <= i, i <= 3)), (0, True)) +
        3*(KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 1, 1)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 1)), (0, True)) +
        (KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 2, 2)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 2)), (0, True)) +
        (KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 3, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 3)), (0, True)) +
        (KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 1, k)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(S(1) <= i, i <= k)), (0, True)) +
        k*(KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, k, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(k <= i, i <= 3)), (0, True)) +
        (4 - k)*(KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, k, l)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(k <= i, i <= l)), (0, True)) +
        (l - k + 1)*(KD(i, k) + x)*y)
示例#9
0
def test_deltasummation_mul_add_x_y_add_kd_kd():
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 1, 3)) == piecewise_fold(
        Piecewise((x + y, And(S(1) <= i, i <= 3)), (0, True)) +
        Piecewise((x + y, And(S(1) <= j, j <= 3)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 1, 1)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 1)), (0, True)) +
        Piecewise((x + y, Eq(j, 1)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 2, 2)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 2)), (0, True)) +
        Piecewise((x + y, Eq(j, 2)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 3, 3)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 3)), (0, True)) +
        Piecewise((x + y, Eq(j, 3)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 1, l)) == piecewise_fold(
        Piecewise((x + y, And(S(1) <= i, i <= l)), (0, True)) +
        Piecewise((x + y, And(S(1) <= j, j <= l)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, l, 3)) == piecewise_fold(
        Piecewise((x + y, And(l <= i, i <= 3)), (0, True)) +
        Piecewise((x + y, And(l <= j, j <= 3)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, l, m)) == piecewise_fold(
        Piecewise((x + y, And(l <= i, i <= m)), (0, True)) +
        Piecewise((x + y, And(l <= j, j <= m)), (0, True)))
示例#10
0
def test_deltasummation_mul_add_x_y_add_kd_kd():
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, 1, 3)) == piecewise_fold(
        Piecewise((x + y, And(S(1) <= i, i <= 3)), (0, True)) +
        Piecewise((x + y, And(S(1) <= j, j <= 3)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, 1, 1)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 1)), (0, True)) +
        Piecewise((x + y, Eq(j, 1)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, 2, 2)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 2)), (0, True)) +
        Piecewise((x + y, Eq(j, 2)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, 3, 3)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 3)), (0, True)) +
        Piecewise((x + y, Eq(j, 3)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, 1, l)) == piecewise_fold(
        Piecewise((x + y, And(S(1) <= i, i <= l)), (0, True)) +
        Piecewise((x + y, And(S(1) <= j, j <= l)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, l, 3)) == piecewise_fold(
        Piecewise((x + y, And(l <= i, i <= 3)), (0, True)) +
        Piecewise((x + y, And(l <= j, j <= 3)), (0, True)))
    assert ds((x + y) * (KD(i, k) + KD(j, k)), (k, l, m)) == piecewise_fold(
        Piecewise((x + y, And(l <= i, i <= m)), (0, True)) +
        Piecewise((x + y, And(l <= j, j <= m)), (0, True)))
示例#11
0
def test_deltasummation_add_mul_x_kd_kd():
    assert ds(x * KD(i, k) + KD(j, k), (k, 1, 3)) == piecewise_fold(
        Piecewise((x, And(1 <= i, i <= 3)), (0, True)) +
        Piecewise((1, And(1 <= j, j <= 3)), (0, True)))
    assert ds(x * KD(i, k) + KD(j, k), (k, 1, 1)) == piecewise_fold(
        Piecewise((x, Eq(i, 1)), (0, True)) +
        Piecewise((1, Eq(j, 1)), (0, True)))
    assert ds(x * KD(i, k) + KD(j, k), (k, 2, 2)) == piecewise_fold(
        Piecewise((x, Eq(i, 2)), (0, True)) +
        Piecewise((1, Eq(j, 2)), (0, True)))
    assert ds(x * KD(i, k) + KD(j, k), (k, 3, 3)) == piecewise_fold(
        Piecewise((x, Eq(i, 3)), (0, True)) +
        Piecewise((1, Eq(j, 3)), (0, True)))
    assert ds(x * KD(i, k) + KD(j, k), (k, 1, l)) == piecewise_fold(
        Piecewise((x, And(1 <= i, i <= l)), (0, True)) +
        Piecewise((1, And(1 <= j, j <= l)), (0, True)))
    assert ds(x * KD(i, k) + KD(j, k), (k, l, 3)) == piecewise_fold(
        Piecewise((x, And(l <= i, i <= 3)), (0, True)) +
        Piecewise((1, And(l <= j, j <= 3)), (0, True)))
    assert ds(x * KD(i, k) + KD(j, k), (k, l, m)) == piecewise_fold(
        Piecewise((x, And(l <= i, i <= m)), (0, True)) +
        Piecewise((1, And(l <= j, j <= m)), (0, True)))
示例#12
0
def _solveset(f, symbol, domain, _check=False):
    """Helper for solveset to return a result from an expression
    that has already been sympify'ed and is known to contain the
    given symbol."""
    # _check controls whether the answer is checked or not

    from sympy.simplify.simplify import signsimp
    orig_f = f
    f = together(f)
    if f.is_Mul:
        _, f = f.as_independent(symbol, as_Add=False)
    if f.is_Add:
        a, h = f.as_independent(symbol)
        m, h = h.as_independent(symbol, as_Add=False)
        f = a/m + h  # XXX condition `m != 0` should be added to soln
    f = piecewise_fold(f)

    # assign the solvers to use
    solver = lambda f, x, domain=domain: _solveset(f, x, domain)
    if domain.is_subset(S.Reals):
        inverter_func = invert_real
    else:
        inverter_func = invert_complex
    inverter = lambda f, rhs, symbol: inverter_func(f, rhs, symbol, domain)

    result = EmptySet()

    if f.expand().is_zero:
        return domain
    elif not f.has(symbol):
        return EmptySet()
    elif f.is_Mul and all(_is_finite_with_finite_vars(m, domain)
            for m in f.args):
        # if f(x) and g(x) are both finite we can say that the solution of
        # f(x)*g(x) == 0 is same as Union(f(x) == 0, g(x) == 0) is not true in
        # general. g(x) can grow to infinitely large for the values where
        # f(x) == 0. To be sure that we are not silently allowing any
        # wrong solutions we are using this technique only if both f and g are
        # finite for a finite input.
        result = Union(*[solver(m, symbol) for m in f.args])
    elif _is_function_class_equation(TrigonometricFunction, f, symbol) or \
            _is_function_class_equation(HyperbolicFunction, f, symbol):
        result = _solve_trig(f, symbol, domain)
    elif f.is_Piecewise:
        dom = domain
        result = EmptySet()
        expr_set_pairs = f.as_expr_set_pairs()
        for (expr, in_set) in expr_set_pairs:
            if in_set.is_Relational:
                in_set = in_set.as_set()
            if in_set.is_Interval:
                dom -= in_set
            solns = solver(expr, symbol, in_set)
            result += solns
    else:
        lhs, rhs_s = inverter(f, 0, symbol)
        if lhs == symbol:
            # do some very minimal simplification since
            # repeated inversion may have left the result
            # in a state that other solvers (e.g. poly)
            # would have simplified; this is done here
            # rather than in the inverter since here it
            # is only done once whereas there it would
            # be repeated for each step of the inversion
            if isinstance(rhs_s, FiniteSet):
                rhs_s = FiniteSet(*[Mul(*
                    signsimp(i).as_content_primitive())
                    for i in rhs_s])
            result = rhs_s
        elif isinstance(rhs_s, FiniteSet):
            for equation in [lhs - rhs for rhs in rhs_s]:
                if equation == f:
                    if any(_has_rational_power(g, symbol)[0]
                           for g in equation.args) or _has_rational_power(
                           equation, symbol)[0]:
                        result += _solve_radical(equation,
                                                 symbol,
                                                 solver)
                    elif equation.has(Abs):
                        result += _solve_abs(f, symbol, domain)
                    else:
                        result += _solve_as_rational(equation, symbol, domain)
                else:
                    result += solver(equation, symbol)
        else:
            result = ConditionSet(symbol, Eq(f, 0), domain)

    if _check:
        if isinstance(result, ConditionSet):
            # it wasn't solved or has enumerated all conditions
            # -- leave it alone
            return result

        # whittle away all but the symbol-containing core
        # to use this for testing
        fx = orig_f.as_independent(symbol, as_Add=True)[1]
        fx = fx.as_independent(symbol, as_Add=False)[1]

        if isinstance(result, FiniteSet):
            # check the result for invalid solutions
            result = FiniteSet(*[s for s in result
                      if isinstance(s, RootOf)
                      or domain_check(fx, symbol, s)])

    return result
def simplify(expr, ratio=1.7, measure=count_ops, fu=False):
    """
    Simplifies the given expression.

    Simplification is not a well defined term and the exact strategies
    this function tries can change in the future versions of SymPy. If
    your algorithm relies on "simplification" (whatever it is), try to
    determine what you need exactly  -  is it powsimp()?, radsimp()?,
    together()?, logcombine()?, or something else? And use this particular
    function directly, because those are well defined and thus your algorithm
    will be robust.

    Nonetheless, especially for interactive use, or when you don't know
    anything about the structure of the expression, simplify() tries to apply
    intelligent heuristics to make the input expression "simpler".  For
    example:

    >>> from sympy import simplify, cos, sin
    >>> from sympy.abc import x, y
    >>> a = (x + x**2)/(x*sin(y)**2 + x*cos(y)**2)
    >>> a
    (x**2 + x)/(x*sin(y)**2 + x*cos(y)**2)
    >>> simplify(a)
    x + 1

    Note that we could have obtained the same result by using specific
    simplification functions:

    >>> from sympy import trigsimp, cancel
    >>> trigsimp(a)
    (x**2 + x)/x
    >>> cancel(_)
    x + 1

    In some cases, applying :func:`simplify` may actually result in some more
    complicated expression. The default ``ratio=1.7`` prevents more extreme
    cases: if (result length)/(input length) > ratio, then input is returned
    unmodified.  The ``measure`` parameter lets you specify the function used
    to determine how complex an expression is.  The function should take a
    single argument as an expression and return a number such that if
    expression ``a`` is more complex than expression ``b``, then
    ``measure(a) > measure(b)``.  The default measure function is
    :func:`count_ops`, which returns the total number of operations in the
    expression.

    For example, if ``ratio=1``, ``simplify`` output can't be longer
    than input.

    ::

        >>> from sympy import sqrt, simplify, count_ops, oo
        >>> root = 1/(sqrt(2)+3)

    Since ``simplify(root)`` would result in a slightly longer expression,
    root is returned unchanged instead::

       >>> simplify(root, ratio=1) == root
       True

    If ``ratio=oo``, simplify will be applied anyway::

        >>> count_ops(simplify(root, ratio=oo)) > count_ops(root)
        True

    Note that the shortest expression is not necessary the simplest, so
    setting ``ratio`` to 1 may not be a good idea.
    Heuristically, the default value ``ratio=1.7`` seems like a reasonable
    choice.

    You can easily define your own measure function based on what you feel
    should represent the "size" or "complexity" of the input expression.  Note
    that some choices, such as ``lambda expr: len(str(expr))`` may appear to be
    good metrics, but have other problems (in this case, the measure function
    may slow down simplify too much for very large expressions).  If you don't
    know what a good metric would be, the default, ``count_ops``, is a good
    one.

    For example:

    >>> from sympy import symbols, log
    >>> a, b = symbols('a b', positive=True)
    >>> g = log(a) + log(b) + log(a)*log(1/b)
    >>> h = simplify(g)
    >>> h
    log(a*b**(-log(a) + 1))
    >>> count_ops(g)
    8
    >>> count_ops(h)
    5

    So you can see that ``h`` is simpler than ``g`` using the count_ops metric.
    However, we may not like how ``simplify`` (in this case, using
    ``logcombine``) has created the ``b**(log(1/a) + 1)`` term.  A simple way
    to reduce this would be to give more weight to powers as operations in
    ``count_ops``.  We can do this by using the ``visual=True`` option:

    >>> print(count_ops(g, visual=True))
    2*ADD + DIV + 4*LOG + MUL
    >>> print(count_ops(h, visual=True))
    2*LOG + MUL + POW + SUB

    >>> from sympy import Symbol, S
    >>> def my_measure(expr):
    ...     POW = Symbol('POW')
    ...     # Discourage powers by giving POW a weight of 10
    ...     count = count_ops(expr, visual=True).subs(POW, 10)
    ...     # Every other operation gets a weight of 1 (the default)
    ...     count = count.replace(Symbol, type(S.One))
    ...     return count
    >>> my_measure(g)
    8
    >>> my_measure(h)
    14
    >>> 15./8 > 1.7 # 1.7 is the default ratio
    True
    >>> simplify(g, measure=my_measure)
    -log(a)*log(b) + log(a) + log(b)

    Note that because ``simplify()`` internally tries many different
    simplification strategies and then compares them using the measure
    function, we get a completely different result that is still different
    from the input expression by doing this.
    """
    expr = sympify(expr)

    try:
        return expr._eval_simplify(ratio=ratio, measure=measure)
    except AttributeError:
        pass

    original_expr = expr = signsimp(expr)

    from sympy.simplify.hyperexpand import hyperexpand
    from sympy.functions.special.bessel import BesselBase
    from sympy import Sum, Product

    if not isinstance(expr, Basic) or not expr.args:  # XXX: temporary hack
        return expr

    if not isinstance(expr, (Add, Mul, Pow, ExpBase)):
        if isinstance(expr, Function) and hasattr(expr, "inverse"):
            if len(expr.args) == 1 and len(expr.args[0].args) == 1 and \
               isinstance(expr.args[0], expr.inverse(argindex=1)):
                return simplify(expr.args[0].args[0], ratio=ratio,
                                measure=measure, fu=fu)
        return expr.func(*[simplify(x, ratio=ratio, measure=measure, fu=fu)
                         for x in expr.args])

    # TODO: Apply different strategies, considering expression pattern:
    # is it a purely rational function? Is there any trigonometric function?...
    # See also https://github.com/sympy/sympy/pull/185.

    def shorter(*choices):
        '''Return the choice that has the fewest ops. In case of a tie,
        the expression listed first is selected.'''
        if not has_variety(choices):
            return choices[0]
        return min(choices, key=measure)

    expr = bottom_up(expr, lambda w: w.normal())
    expr = Mul(*powsimp(expr).as_content_primitive())
    _e = cancel(expr)
    expr1 = shorter(_e, _mexpand(_e).cancel())  # issue 6829
    expr2 = shorter(together(expr, deep=True), together(expr1, deep=True))

    if ratio is S.Infinity:
        expr = expr2
    else:
        expr = shorter(expr2, expr1, expr)
    if not isinstance(expr, Basic):  # XXX: temporary hack
        return expr

    expr = factor_terms(expr, sign=False)

    # hyperexpand automatically only works on hypergeometric terms
    expr = hyperexpand(expr)

    expr = piecewise_fold(expr)

    if expr.has(BesselBase):
        expr = besselsimp(expr)

    if expr.has(TrigonometricFunction) and not fu or expr.has(
            HyperbolicFunction):
        expr = trigsimp(expr, deep=True)

    if expr.has(log):
        expr = shorter(expand_log(expr, deep=True), logcombine(expr))

    if expr.has(CombinatorialFunction, gamma):
        expr = combsimp(expr)

    if expr.has(Sum):
        expr = sum_simplify(expr)

    if expr.has(Product):
        expr = product_simplify(expr)

    short = shorter(powsimp(expr, combine='exp', deep=True), powsimp(expr), expr)
    short = shorter(short, factor_terms(short), expand_power_exp(expand_mul(short)))
    if short.has(TrigonometricFunction, HyperbolicFunction, ExpBase):
        short = exptrigsimp(short, simplify=False)

    # get rid of hollow 2-arg Mul factorization
    hollow_mul = Transform(
        lambda x: Mul(*x.args),
        lambda x:
        x.is_Mul and
        len(x.args) == 2 and
        x.args[0].is_Number and
        x.args[1].is_Add and
        x.is_commutative)
    expr = short.xreplace(hollow_mul)

    numer, denom = expr.as_numer_denom()
    if denom.is_Add:
        n, d = fraction(radsimp(1/denom, symbolic=False, max_terms=1))
        if n is not S.One:
            expr = (numer*n).expand()/d

    if expr.could_extract_minus_sign():
        n, d = fraction(expr)
        if d != 0:
            expr = signsimp(-n/(-d))

    if measure(expr) > ratio*measure(original_expr):
        expr = original_expr

    return expr
示例#14
0
文件: solveset.py 项目: shahrk/sympy
def solveset_real(f, symbol):
    """ Solves a real valued equation.

    Parameters
    ==========

    f : Expr
        The target equation
    symbol : Symbol
        The variable for which the equation is solved

    Returns
    =======

    Set
        A set of values for `symbol` for which `f` is equal to
        zero. An `EmptySet` is returned if no solution is found.
        A `ConditionSet` is returned as unsolved object if algorithms
        to evaluate complete solutions are not yet implemented.

    `solveset_real` claims to be complete in the set of the solution it
    returns.

    Raises
    ======

    NotImplementedError
        Algorithms to solve inequalities in complex domain are
        not yet implemented.
    ValueError
        The input is not valid.
    RuntimeError
        It is a bug, please report to the github issue tracker.


    See Also
    =======

    solveset_complex : solver for complex domain

    Examples
    ========

    >>> from sympy import Symbol, exp, sin, sqrt, I
    >>> from sympy.solvers.solveset import solveset_real
    >>> x = Symbol('x', real=True)
    >>> a = Symbol('a', real=True, finite=True, positive=True)
    >>> solveset_real(x**2 - 1, x)
    {-1, 1}
    >>> solveset_real(sqrt(5*x + 6) - 2 - x, x)
    {-1, 2}
    >>> solveset_real(x - I, x)
    EmptySet()
    >>> solveset_real(x - a, x)
    {a}
    >>> solveset_real(exp(x) - a, x)
    {log(a)}

    * In case the equation has infinitely many solutions an infinitely indexed
      `ImageSet` is returned.

    >>> solveset_real(sin(x) - 1, x)
    ImageSet(Lambda(_n, 2*_n*pi + pi/2), Integers())

    * If the equation is true for any arbitrary value of the symbol a `S.Reals`
      set is returned.

    >>> solveset_real(x - x, x)
    (-oo, oo)

    """
    if not symbol.is_Symbol:
        raise ValueError(" %s is not a symbol" % (symbol))

    f = sympify(f)
    if not isinstance(f, (Expr, Number)):
        raise ValueError(" %s is not a valid sympy expression" % (f))

    original_eq = f
    f = together(f)

    # In this, unlike in solveset_complex, expression should only
    # be expanded when fraction(f)[1] does not contain the symbol
    # for which we are solving
    if not symbol in fraction(f)[1].free_symbols and f.is_rational_function():
        f = expand(f)

    if f.has(Piecewise):
        f = piecewise_fold(f)
    result = EmptySet()

    if f.expand().is_zero:
        return S.Reals
    elif not f.has(symbol):
        return EmptySet()
    elif f.is_Mul and all([_is_finite_with_finite_vars(m) for m in f.args]):
        # if f(x) and g(x) are both finite we can say that the solution of
        # f(x)*g(x) == 0 is same as Union(f(x) == 0, g(x) == 0) is not true in
        # general. g(x) can grow to infinitely large for the values where
        # f(x) == 0. To be sure that we are not silently allowing any
        # wrong solutions we are using this technique only if both f and g are
        # finite for a finite input.
        result = Union(*[solveset_real(m, symbol) for m in f.args])
    elif _is_function_class_equation(TrigonometricFunction, f, symbol) or \
            _is_function_class_equation(HyperbolicFunction, f, symbol):
        result = _solve_real_trig(f, symbol)
    elif f.is_Piecewise:
        result = EmptySet()
        expr_set_pairs = f.as_expr_set_pairs()
        for (expr, in_set) in expr_set_pairs:
            solns = solveset_real(expr, symbol).intersect(in_set)
            result = result + solns
    else:
        lhs, rhs_s = invert_real(f, 0, symbol)
        if lhs == symbol:
            result = rhs_s
        elif isinstance(rhs_s, FiniteSet):
            equations = [lhs - rhs for rhs in rhs_s]
            for equation in equations:
                if equation == f:
                    if any(
                            _has_rational_power(g, symbol)[0]
                            for g in equation.args):
                        result += _solve_radical(equation, symbol,
                                                 solveset_real)
                    elif equation.has(Abs):
                        result += _solve_abs(f, symbol)
                    else:
                        result += _solve_as_rational(
                            equation,
                            symbol,
                            solveset_solver=solveset_real,
                            as_poly_solver=_solve_as_poly_real)
                else:
                    result += solveset_real(equation, symbol)
        else:
            result = ConditionSet(symbol, Eq(f, 0), S.Reals)

    if isinstance(result, FiniteSet):
        result = [
            s for s in result
            if isinstance(s, RootOf) or domain_check(original_eq, symbol, s)
        ]
        return FiniteSet(*result).intersect(S.Reals)
    else:
        return result.intersect(S.Reals)
示例#15
0
def solveset_real(f, symbol):
    """ Solves a real valued equation.

    Parameters
    ==========

    f : Expr
        The target equation
    symbol : Symbol
        The variable for which the equation is solved

    Returns
    =======

    Set
        A set of values for `symbol` for which `f` is equal to
        zero. An `EmptySet` is returned if no solution is found.

    `solveset_real` claims to be complete in the set of the solution it
    returns.

    Raises
    ======

    NotImplementedError
        The algorithms for to find the solution of the given equation are
        not yet implemented.
    ValueError
        The input is not valid.
    RuntimeError
        It is a bug, please report to the github issue tracker.


    See Also
    =======

    solveset_complex : solver for complex domain

    Examples
    ========

    >>> from sympy import Symbol, exp, sin, sqrt, I
    >>> from sympy.solvers.solveset import solveset_real
    >>> x = Symbol('x', real=True)
    >>> a = Symbol('a', real=True, finite=True, positive=True)
    >>> solveset_real(x**2 - 1, x)
    {-1, 1}
    >>> solveset_real(sqrt(5*x + 6) - 2 - x, x)
    {-1, 2}
    >>> solveset_real(x - I, x)
    EmptySet()
    >>> solveset_real(x - a, x)
    {a}
    >>> solveset_real(exp(x) - a, x)
    {log(a)}

    In case the equation has infinitely many solutions an infinitely indexed
    `ImageSet` is returned.

    >>> solveset_real(sin(x) - 1, x)
    ImageSet(Lambda(_n, 2*_n*pi + pi/2), Integers())

    If the equation is true for any arbitrary value of the symbol a `S.Reals`
    set is returned.

    >>> solveset_real(x - x, x)
    (-oo, oo)

    """
    if not symbol.is_Symbol:
        raise ValueError(" %s is not a symbol" % (symbol))

    f = sympify(f)
    if not isinstance(f, (Expr, Number)):
        raise ValueError(" %s is not a valid sympy expression" % (f))

    original_eq = f
    f = together(f)

    if f.has(Piecewise):
        f = piecewise_fold(f)
    result = EmptySet()

    if f.expand().is_zero:
        return S.Reals
    elif not f.has(symbol):
        return EmptySet()
    elif f.is_Mul and all([_is_finite_with_finite_vars(m) for m in f.args]):
        # if f(x) and g(x) are both finite we can say that the solution of
        # f(x)*g(x) == 0 is same as Union(f(x) == 0, g(x) == 0) is not true in
        # general. g(x) can grow to infinitely large for the values where
        # f(x) == 0. To be sure that we not are silently allowing any
        # wrong solutions we are using this technique only if both f and g and
        # finite for a finite input.
        result = Union(*[solveset_real(m, symbol) for m in f.args])
    elif _is_function_class_equation(C.TrigonometricFunction, f, symbol) or \
            _is_function_class_equation(C.HyperbolicFunction, f, symbol):
        result = _solve_real_trig(f, symbol)
    elif f.is_Piecewise:
        result = EmptySet()
        expr_set_pairs = f.as_expr_set_pairs()
        for (expr, in_set) in expr_set_pairs:
            solns = solveset_real(expr, symbol).intersect(in_set)
            result = result + solns
    else:
        lhs, rhs_s = invert_real(f, 0, symbol)
        if lhs == symbol:
            result = rhs_s
        elif isinstance(rhs_s, FiniteSet):
            equations = [lhs - rhs for rhs in rhs_s]
            for equation in equations:
                if equation == f:
                    if any(_has_rational_power(g, symbol)[0]
                           for g in equation.args):
                        result += _solve_radical(equation,
                                                 symbol,
                                                 solveset_real)
                    elif equation.has(Abs):
                        result += _solve_abs(f, symbol)
                    else:
                        result += _solve_as_rational(equation, symbol,
                                                     solveset_solver=solveset_real,
                                                     as_poly_solver=_solve_as_poly_real)
                else:
                    result += solveset_real(equation, symbol)
        else:
            raise NotImplementedError

    if isinstance(result, FiniteSet):
        result = [s for s in result
                  if isinstance(s, RootOf)
                  or domain_check(original_eq, symbol, s)]
        return FiniteSet(*result).intersect(S.Reals)
    else:
        return result.intersect(S.Reals)
示例#16
0
文件: delta.py 项目: alhirzel/sympy
def deltasummation(f, limit, no_piecewise=False):
    """
    Handle summations containing a KroneckerDelta.

    The idea for summation is the following:

    - If we are dealing with a KroneckerDelta expression, i.e. KroneckerDelta(g(x), j),
      we try to simplify it.

      If we could simplify it, then we sum the resulting expression.
      We already know we can sum a simplified expression, because only
      simple KroneckerDelta expressions are involved.

      If we couldn't simplify it, there are two cases:

      1) The expression is a simple expression: we return the summation,
         taking care if we are dealing with a Derivative or with a proper
         KroneckerDelta.

      2) The expression is not simple (i.e. KroneckerDelta(cos(x))): we can do
         nothing at all.

    - If the expr is a multiplication expr having a KroneckerDelta term:

      First we expand it.

      If the expansion did work, then we try to sum the expansion.

      If not, we try to extract a simple KroneckerDelta term, then we have two
      cases:

      1) We have a simple KroneckerDelta term, so we return the summation.

      2) We didn't have a simple term, but we do have an expression with
         simplified KroneckerDelta terms, so we sum this expression.

    Examples
    ========

    >>> from sympy import oo
    >>> from sympy.abc import i, j, k
    >>> from sympy.concrete.delta import deltasummation
    >>> from sympy import KroneckerDelta, Piecewise
    >>> deltasummation(KroneckerDelta(i, k), (k, -oo, oo))
    1
    >>> deltasummation(KroneckerDelta(i, k), (k, 0, oo))
    Piecewise((1, i >= 0), (0, True))
    >>> deltasummation(KroneckerDelta(i, k), (k, 1, 3))
    Piecewise((1, And(1 <= i, i <= 3)), (0, True))
    >>> deltasummation(k*KroneckerDelta(i, j)*KroneckerDelta(j, k), (k, -oo, oo))
    j*KroneckerDelta(i, j)
    >>> deltasummation(j*KroneckerDelta(i, j), (j, -oo, oo))
    i
    >>> deltasummation(i*KroneckerDelta(i, j), (i, -oo, oo))
    j

    See Also
    ========

    deltaproduct
    sympy.functions.special.tensor_functions.KroneckerDelta
    sympy.concrete.sums.summation
    """
    from sympy.concrete.summations import summation
    from sympy.solvers import solve

    if ((limit[2] - limit[1]) < 0) is True:
        return S.Zero

    if not f.has(KroneckerDelta):
        return summation(f, limit)

    x = limit[0]

    g = _expand_delta(f, x)
    if g.is_Add:
        return piecewise_fold(
            g.func(*[deltasummation(h, limit, no_piecewise) for h in g.args]))

    # try to extract a simple KroneckerDelta term
    delta, expr = _extract_delta(g, x)

    if not delta:
        return summation(f, limit)

    solns = solve(delta.args[0] - delta.args[1], x)
    if len(solns) == 0:
        return S.Zero
    elif len(solns) != 1:
        return Sum(f, limit)
    value = solns[0]
    if no_piecewise:
        return expr.subs(x, value)
    return Piecewise(
        (expr.subs(x, value), Interval(*limit[1:3]).as_relational(value)),
        (S.Zero, True)
    )
示例#17
0
def test_deltasummation():
    ds = deltasummation
    assert ds(x, (j, 1, 0)) == 0
    assert ds(x, (j, 1, 3)) == 3*x
    assert ds(x + y, (j, 1, 3)) == 3*(x + y)
    assert ds(x*y, (j, 1, 3)) == 3*x*y
    assert ds(KD(i, j), (k, 1, 3)) == 3*KD(i, j)
    assert ds(x*KD(i, j), (k, 1, 3)) == 3*x*KD(i, j)
    assert ds(x*y*KD(i, j), (k, 1, 3)) == 3*x*y*KD(i, j)

    # return unevaluated, until it gets implemented
    assert ds(KD(i**2, j**2), (j, -oo, oo)) == \
        Sum(KD(i**2, j**2), (j, -oo, oo))

    assert Piecewise((KD(i, k), And(S(1) <= i, i <= 3)), (0, True)) == \
        ds(KD(i, j)*KD(j, k), (j, 1, 3)) == \
        ds(KD(j, k)*KD(i, j), (j, 1, 3))

    assert ds(KD(i, k), (k, -oo, oo)) == 1
    assert ds(KD(i, k), (k, 0, oo)) == Piecewise((1, i >= 0), (0, True))
    assert ds(KD(i, k), (k, 1, 3)) == \
        Piecewise((1, And(S(1) <= i, i <= 3)), (0, True))
    assert ds(k*KD(i, j)*KD(j, k), (k, -oo, oo)) == j*KD(i, j)
    assert ds(j*KD(i, j), (j, -oo, oo)) == i
    assert ds(i*KD(i, j), (i, -oo, oo)) == j
    assert ds(x, (i, 1, 3)) == 3*x
    assert ds((i + j)*KD(i, j), (j, -oo, oo)) == 2*i

    assert ds(KD(i, j), (j, 1, 3)) == \
        Piecewise((1, And(S(1) <= i, i <= 3)), (0, True))
    assert ds(KD(i, j), (j, 1, 1)) == Piecewise((1, Eq(i, 1)), (0, True))
    assert ds(KD(i, j), (j, 2, 2)) == Piecewise((1, Eq(i, 2)), (0, True))
    assert ds(KD(i, j), (j, 3, 3)) == Piecewise((1, Eq(i, 3)), (0, True))
    assert ds(KD(i, j), (j, 1, k)) == \
        Piecewise((1, And(S(1) <= i, i <= k)), (0, True))
    assert ds(KD(i, j), (j, k, 3)) == \
        Piecewise((1, And(k <= i, i <= 3)), (0, True))
    assert ds(KD(i, j), (j, k, l)) == \
        Piecewise((1, And(k <= i, i <= l)), (0, True))

    assert ds(x*KD(i, j), (j, 1, 3)) == \
        Piecewise((x, And(S(1) <= i, i <= 3)), (0, True))
    assert ds(x*KD(i, j), (j, 1, 1)) == Piecewise((x, Eq(i, 1)), (0, True))
    assert ds(x*KD(i, j), (j, 2, 2)) == Piecewise((x, Eq(i, 2)), (0, True))
    assert ds(x*KD(i, j), (j, 3, 3)) == Piecewise((x, Eq(i, 3)), (0, True))
    assert ds(x*KD(i, j), (j, 1, k)) == \
        Piecewise((x, And(S(1) <= i, i <= k)), (0, True))
    assert ds(x*KD(i, j), (j, k, 3)) == \
        Piecewise((x, And(k <= i, i <= 3)), (0, True))
    assert ds(x*KD(i, j), (j, k, l)) == \
        Piecewise((x, And(k <= i, i <= l)), (0, True))

    assert ds((x + y)*KD(i, j), (j, 1, 3)) == \
        Piecewise((x + y, And(S(1) <= i, i <= 3)), (0, True))
    assert ds((x + y)*KD(i, j), (j, 1, 1)) == \
        Piecewise((x + y, Eq(i, 1)), (0, True))
    assert ds((x + y)*KD(i, j), (j, 2, 2)) == \
        Piecewise((x + y, Eq(i, 2)), (0, True))
    assert ds((x + y)*KD(i, j), (j, 3, 3)) == \
        Piecewise((x + y, Eq(i, 3)), (0, True))
    assert ds((x + y)*KD(i, j), (j, 1, k)) == \
        Piecewise((x + y, And(S(1) <= i, i <= k)), (0, True))
    assert ds((x + y)*KD(i, j), (j, k, 3)) == \
        Piecewise((x + y, And(k <= i, i <= 3)), (0, True))
    assert ds((x + y)*KD(i, j), (j, k, l)) == \
        Piecewise((x + y, And(k <= i, i <= l)), (0, True))

    assert ds(KD(i, k) + KD(j, k), (k, 1, 3)) == piecewise_fold(
        Piecewise((1, And(S(1) <= i, i <= 3)), (0, True)) +
        Piecewise((1, And(S(1) <= j, j <= 3)), (0, True)))
    assert ds(KD(i, k) + KD(j, k), (k, 1, 1)) == piecewise_fold(
        Piecewise((1, Eq(i, 1)), (0, True)) +
        Piecewise((1, Eq(j, 1)), (0, True)))
    assert ds(KD(i, k) + KD(j, k), (k, 2, 2)) == piecewise_fold(
        Piecewise((1, Eq(i, 2)), (0, True)) +
        Piecewise((1, Eq(j, 2)), (0, True)))
    assert ds(KD(i, k) + KD(j, k), (k, 3, 3)) == piecewise_fold(
        Piecewise((1, Eq(i, 3)), (0, True)) +
        Piecewise((1, Eq(j, 3)), (0, True)))
    assert ds(KD(i, k) + KD(j, k), (k, 1, l)) == piecewise_fold(
        Piecewise((1, And(S(1) <= i, i <= l)), (0, True)) +
        Piecewise((1, And(S(1) <= j, j <= l)), (0, True)))
    assert ds(KD(i, k) + KD(j, k), (k, l, 3)) == piecewise_fold(
        Piecewise((1, And(l <= i, i <= 3)), (0, True)) +
        Piecewise((1, And(l <= j, j <= 3)), (0, True)))
    assert ds(KD(i, k) + KD(j, k), (k, l, m)) == piecewise_fold(
        Piecewise((1, And(l <= i, i <= m)), (0, True)) +
        Piecewise((1, And(l <= j, j <= m)), (0, True)))

    assert ds(x*KD(i, k) + KD(j, k), (k, 1, 3)) == piecewise_fold(
        Piecewise((x, And(S(1) <= i, i <= 3)), (0, True)) +
        Piecewise((1, And(S(1) <= j, j <= 3)), (0, True)))
    assert ds(x*KD(i, k) + KD(j, k), (k, 1, 1)) == piecewise_fold(
        Piecewise((x, Eq(i, 1)), (0, True)) +
        Piecewise((1, Eq(j, 1)), (0, True)))
    assert ds(x*KD(i, k) + KD(j, k), (k, 2, 2)) == piecewise_fold(
        Piecewise((x, Eq(i, 2)), (0, True)) +
        Piecewise((1, Eq(j, 2)), (0, True)))
    assert ds(x*KD(i, k) + KD(j, k), (k, 3, 3)) == piecewise_fold(
        Piecewise((x, Eq(i, 3)), (0, True)) +
        Piecewise((1, Eq(j, 3)), (0, True)))
    assert ds(x*KD(i, k) + KD(j, k), (k, 1, l)) == piecewise_fold(
        Piecewise((x, And(S(1) <= i, i <= l)), (0, True)) +
        Piecewise((1, And(S(1) <= j, j <= l)), (0, True)))
    assert ds(x*KD(i, k) + KD(j, k), (k, l, 3)) == piecewise_fold(
        Piecewise((x, And(l <= i, i <= 3)), (0, True)) +
        Piecewise((1, And(l <= j, j <= 3)), (0, True)))
    assert ds(x*KD(i, k) + KD(j, k), (k, l, m)) == piecewise_fold(
        Piecewise((x, And(l <= i, i <= m)), (0, True)) +
        Piecewise((1, And(l <= j, j <= m)), (0, True)))

    assert ds(x*(KD(i, k) + KD(j, k)), (k, 1, 3)) == piecewise_fold(
        Piecewise((x, And(S(1) <= i, i <= 3)), (0, True)) +
        Piecewise((x, And(S(1) <= j, j <= 3)), (0, True)))
    assert ds(x*(KD(i, k) + KD(j, k)), (k, 1, 1)) == piecewise_fold(
        Piecewise((x, Eq(i, 1)), (0, True)) +
        Piecewise((x, Eq(j, 1)), (0, True)))
    assert ds(x*(KD(i, k) + KD(j, k)), (k, 2, 2)) == piecewise_fold(
        Piecewise((x, Eq(i, 2)), (0, True)) +
        Piecewise((x, Eq(j, 2)), (0, True)))
    assert ds(x*(KD(i, k) + KD(j, k)), (k, 3, 3)) == piecewise_fold(
        Piecewise((x, Eq(i, 3)), (0, True)) +
        Piecewise((x, Eq(j, 3)), (0, True)))
    assert ds(x*(KD(i, k) + KD(j, k)), (k, 1, l)) == piecewise_fold(
        Piecewise((x, And(S(1) <= i, i <= l)), (0, True)) +
        Piecewise((x, And(S(1) <= j, j <= l)), (0, True)))
    assert ds(x*(KD(i, k) + KD(j, k)), (k, l, 3)) == piecewise_fold(
        Piecewise((x, And(l <= i, i <= 3)), (0, True)) +
        Piecewise((x, And(l <= j, j <= 3)), (0, True)))
    assert ds(x*(KD(i, k) + KD(j, k)), (k, l, m)) == piecewise_fold(
        Piecewise((x, And(l <= i, i <= m)), (0, True)) +
        Piecewise((x, And(l <= j, j <= m)), (0, True)))

    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 1, 3)) == piecewise_fold(
        Piecewise((x + y, And(S(1) <= i, i <= 3)), (0, True)) +
        Piecewise((x + y, And(S(1) <= j, j <= 3)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 1, 1)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 1)), (0, True)) +
        Piecewise((x + y, Eq(j, 1)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 2, 2)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 2)), (0, True)) +
        Piecewise((x + y, Eq(j, 2)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 3, 3)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 3)), (0, True)) +
        Piecewise((x + y, Eq(j, 3)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 1, l)) == piecewise_fold(
        Piecewise((x + y, And(S(1) <= i, i <= l)), (0, True)) +
        Piecewise((x + y, And(S(1) <= j, j <= l)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, l, 3)) == piecewise_fold(
        Piecewise((x + y, And(l <= i, i <= 3)), (0, True)) +
        Piecewise((x + y, And(l <= j, j <= 3)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, l, m)) == piecewise_fold(
        Piecewise((x + y, And(l <= i, i <= m)), (0, True)) +
        Piecewise((x + y, And(l <= j, j <= m)), (0, True)))

    assert ds(x*y + x*KD(i, j), (j, 1, 3)) == \
        Piecewise((3*x*y + x, And(S(1) <= i, i <= 3)), (3*x*y, True))
    assert ds(x*y + x*KD(i, j), (j, 1, 1)) == \
        Piecewise((x*y + x, Eq(i, 1)), (x*y, True))
    assert ds(x*y + x*KD(i, j), (j, 2, 2)) == \
        Piecewise((x*y + x, Eq(i, 2)), (x*y, True))
    assert ds(x*y + x*KD(i, j), (j, 3, 3)) == \
        Piecewise((x*y + x, Eq(i, 3)), (x*y, True))
    assert ds(x*y + x*KD(i, j), (j, 1, k)) == \
        Piecewise((k*x*y + x, And(S(1) <= i, i <= k)), (k*x*y, True))
    assert ds(x*y + x*KD(i, j), (j, k, 3)) == \
        Piecewise(((4 - k)*x*y + x, And(k <= i, i <= 3)), ((4 - k)*x*y, True))
    assert ds(x*y + x*KD(i, j), (j, k, l)) == Piecewise(
        ((l - k + 1)*x*y + x, And(k <= i, i <= l)), ((l - k + 1)*x*y, True))

    assert ds(x*(y + KD(i, j)), (j, 1, 3)) == \
        Piecewise((3*x*y + x, And(S(1) <= i, i <= 3)), (3*x*y, True))
    assert ds(x*(y + KD(i, j)), (j, 1, 1)) == \
        Piecewise((x*y + x, Eq(i, 1)), (x*y, True))
    assert ds(x*(y + KD(i, j)), (j, 2, 2)) == \
        Piecewise((x*y + x, Eq(i, 2)), (x*y, True))
    assert ds(x*(y + KD(i, j)), (j, 3, 3)) == \
        Piecewise((x*y + x, Eq(i, 3)), (x*y, True))
    assert ds(x*(y + KD(i, j)), (j, 1, k)) == \
        Piecewise((k*x*y + x, And(S(1) <= i, i <= k)), (k*x*y, True))
    assert ds(x*(y + KD(i, j)), (j, k, 3)) == \
        Piecewise(((4 - k)*x*y + x, And(k <= i, i <= 3)), ((4 - k)*x*y, True))
    assert ds(x*(y + KD(i, j)), (j, k, l)) == Piecewise(
        ((l - k + 1)*x*y + x, And(k <= i, i <= l)), ((l - k + 1)*x*y, True))

    assert ds(x*(y + 2*KD(i, j)), (j, 1, 3)) == \
        Piecewise((3*x*y + 2*x, And(S(1) <= i, i <= 3)), (3*x*y, True))
    assert ds(x*(y + 2*KD(i, j)), (j, 1, 1)) == \
        Piecewise((x*y + 2*x, Eq(i, 1)), (x*y, True))
    assert ds(x*(y + 2*KD(i, j)), (j, 2, 2)) == \
        Piecewise((x*y + 2*x, Eq(i, 2)), (x*y, True))
    assert ds(x*(y + 2*KD(i, j)), (j, 3, 3)) == \
        Piecewise((x*y + 2*x, Eq(i, 3)), (x*y, True))
    assert ds(x*(y + 2*KD(i, j)), (j, 1, k)) == \
        Piecewise((k*x*y + 2*x, And(S(1) <= i, i <= k)), (k*x*y, True))
    assert ds(x*(y + 2*KD(i, j)), (j, k, 3)) == Piecewise(
        ((4 - k)*x*y + 2*x, And(k <= i, i <= 3)), ((4 - k)*x*y, True))
    assert ds(x*(y + 2*KD(i, j)), (j, k, l)) == Piecewise(
        ((l - k + 1)*x*y + 2*x, And(k <= i, i <= l)), ((l - k + 1)*x*y, True))

    assert ds((x + y)*(y + KD(i, j)), (j, 1, 3)) == Piecewise(
        (3*(x + y)*y + x + y, And(S(1) <= i, i <= 3)), (3*(x + y)*y, True))
    assert ds((x + y)*(y + KD(i, j)), (j, 1, 1)) == \
        Piecewise(((x + y)*y + x + y, Eq(i, 1)), ((x + y)*y, True))
    assert ds((x + y)*(y + KD(i, j)), (j, 2, 2)) == \
        Piecewise(((x + y)*y + x + y, Eq(i, 2)), ((x + y)*y, True))
    assert ds((x + y)*(y + KD(i, j)), (j, 3, 3)) == \
        Piecewise(((x + y)*y + x + y, Eq(i, 3)), ((x + y)*y, True))
    assert ds((x + y)*(y + KD(i, j)), (j, 1, k)) == Piecewise(
        (k*(x + y)*y + x + y, And(S(1) <= i, i <= k)), (k*(x + y)*y, True))
    assert ds((x + y)*(y + KD(i, j)), (j, k, 3)) == Piecewise(
        ((4 - k)*(x + y)*y + x + y, And(k <= i, i <= 3)),
        ((4 - k)*(x + y)*y, True))
    assert ds((x + y)*(y + KD(i, j)), (j, k, l)) == Piecewise(
        ((l - k + 1)*(x + y)*y + x + y, And(k <= i, i <= l)),
        ((l - k + 1)*(x + y)*y, True))

    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 1, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(S(1) <= i, i <= 3)), (0, True)) +
        3*(KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 1, 1)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 1)), (0, True)) +
        (KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 2, 2)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 2)), (0, True)) +
        (KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 3, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 3)), (0, True)) +
        (KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 1, k)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(S(1) <= i, i <= k)), (0, True)) +
        k*(KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, k, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(k <= i, i <= 3)), (0, True)) +
        (4 - k)*(KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, k, l)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(k <= i, i <= l)), (0, True)) +
        (l - k + 1)*(KD(i, k) + x)*y)
示例#18
0
def deltasummation(f, limit, no_piecewise=False):
    """
    Handle summations containing a KroneckerDelta.

    The idea for summation is the following:

    - If we are dealing with a KroneckerDelta expression, i.e. KroneckerDelta(g(x), j),
      we try to simplify it.

      If we could simplify it, then we sum the resulting expression.
      We already know we can sum a simplified expression, because only
      simple KroneckerDelta expressions are involved.

      If we couldn't simplify it, there are two cases:

      1) The expression is a simple expression: we return the summation,
         taking care if we are dealing with a Derivative or with a proper
         KroneckerDelta.

      2) The expression is not simple (i.e. KroneckerDelta(cos(x))): we can do
         nothing at all.

    - If the expr is a multiplication expr having a KroneckerDelta term:

      First we expand it.

      If the expansion did work, then we try to sum the expansion.

      If not, we try to extract a simple KroneckerDelta term, then we have two
      cases:

      1) We have a simple KroneckerDelta term, so we return the summation.

      2) We didn't have a simple term, but we do have an expression with
         simplified KroneckerDelta terms, so we sum this expression.

    Examples
    ========

    >>> from sympy import oo
    >>> from sympy.abc import i, j, k
    >>> from sympy.concrete.delta import deltasummation
    >>> from sympy import KroneckerDelta, Piecewise
    >>> deltasummation(KroneckerDelta(i, k), (k, -oo, oo))
    1
    >>> deltasummation(KroneckerDelta(i, k), (k, 0, oo))
    Piecewise((1, i >= 0), (0, True))
    >>> deltasummation(KroneckerDelta(i, k), (k, 1, 3))
    Piecewise((1, And(1 <= i, i <= 3)), (0, True))
    >>> deltasummation(k*KroneckerDelta(i, j)*KroneckerDelta(j, k), (k, -oo, oo))
    j*KroneckerDelta(i, j)
    >>> deltasummation(j*KroneckerDelta(i, j), (j, -oo, oo))
    i
    >>> deltasummation(i*KroneckerDelta(i, j), (i, -oo, oo))
    j

    See Also
    ========

    deltaproduct
    sympy.functions.special.tensor_functions.KroneckerDelta
    sympy.concrete.sums.summation
    """
    from sympy.concrete.summations import summation
    from sympy.solvers import solve

    if ((limit[2] - limit[1]) < 0) is True:
        return S.Zero

    if not f.has(KroneckerDelta):
        return summation(f, limit)

    x = limit[0]

    g = _expand_delta(f, x)
    if g.is_Add:
        return piecewise_fold(
            g.func(*[deltasummation(h, limit, no_piecewise) for h in g.args]))

    # try to extract a simple KroneckerDelta term
    delta, expr = _extract_delta(g, x)

    if not delta:
        return summation(f, limit)

    solns = solve(delta.args[0] - delta.args[1], x)
    if len(solns) == 0:
        return S.Zero
    elif len(solns) != 1:
        return Sum(f, limit)
    value = solns[0]
    if no_piecewise:
        return expr.subs(x, value)
    return Piecewise(
        (expr.subs(x, value), Interval(*limit[1:3]).as_relational(value)),
        (S.Zero, True)
    )
示例#19
0
def _add_splines(c, b1, d, b2):
    """Construct c*b1 + d*b2."""
    if b1 == S.Zero or c == S.Zero:
        rv = piecewise_fold(d * b2)
    elif b2 == S.Zero or d == S.Zero:
        rv = piecewise_fold(c * b1)
    else:
        new_args = []
        # Just combining the Piecewise without any fancy optimization
        p1 = piecewise_fold(c * b1)
        p2 = piecewise_fold(d * b2)

        # Search all Piecewise arguments except (0, True)
        p2args = list(p2.args[:-1])

        # This merging algorithm assumes the conditions in
        # p1 and p2 are sorted
        for arg in p1.args[:-1]:
            # Conditional of Piecewise are And objects
            # the args of the And object is a tuple of two
            # Relational objects the numerical value is in the .rhs
            # of the Relational object
            expr = arg.expr
            cond = arg.cond

            lower = cond.args[0].rhs

            # Check p2 for matching conditions that can be merged
            for i, arg2 in enumerate(p2args):
                expr2 = arg2.expr
                cond2 = arg2.cond

                lower_2 = cond2.args[0].rhs
                upper_2 = cond2.args[1].rhs

                if cond2 == cond:
                    # Conditions match, join expressions
                    expr += expr2
                    # Remove matching element
                    del p2args[i]
                    # No need to check the rest
                    break
                elif lower_2 < lower and upper_2 <= lower:
                    # Check if arg2 condition smaller than arg1,
                    # add to new_args by itself (no match expected
                    # in p1)
                    new_args.append(arg2)
                    del p2args[i]
                    break

            # Checked all, add expr and cond
            new_args.append((expr, cond))

        # Add remaining items from p2args
        new_args.extend(p2args)

        # Add final (0, True)
        new_args.append((0, True))

        rv = Piecewise(*new_args)

    return rv.expand()
示例#20
0
def test_deltasummation():
    ds = deltasummation
    assert ds(x, (j, 1, 0)) == 0
    assert ds(x, (j, 1, 3)) == 3*x
    assert ds(x + y, (j, 1, 3)) == 3*(x + y)
    assert ds(x*y, (j, 1, 3)) == 3*x*y
    assert ds(KD(i, j), (k, 1, 3)) == 3*KD(i, j)
    assert ds(x*KD(i, j), (k, 1, 3)) == 3*x*KD(i, j)
    assert ds(x*y*KD(i, j), (k, 1, 3)) == 3*x*y*KD(i, j)

    n = symbols('n', integer=True, nonzero=True)
    assert ds(KD(n, 0), (n, 1, 3)) == 0

    # return unevaluated, until it gets implemented
    assert ds(KD(i**2, j**2), (j, -oo, oo)) == \
        Sum(KD(i**2, j**2), (j, -oo, oo))

    assert Piecewise((KD(i, k), And(S(1) <= i, i <= 3)), (0, True)) == \
        ds(KD(i, j)*KD(j, k), (j, 1, 3)) == \
        ds(KD(j, k)*KD(i, j), (j, 1, 3))

    assert ds(KD(i, k), (k, -oo, oo)) == 1
    assert ds(KD(i, k), (k, 0, oo)) == Piecewise((1, i >= 0), (0, True))
    assert ds(KD(i, k), (k, 1, 3)) == \
        Piecewise((1, And(S(1) <= i, i <= 3)), (0, True))
    assert ds(k*KD(i, j)*KD(j, k), (k, -oo, oo)) == j*KD(i, j)
    assert ds(j*KD(i, j), (j, -oo, oo)) == i
    assert ds(i*KD(i, j), (i, -oo, oo)) == j
    assert ds(x, (i, 1, 3)) == 3*x
    assert ds((i + j)*KD(i, j), (j, -oo, oo)) == 2*i

    assert ds(KD(i, j), (j, 1, 3)) == \
        Piecewise((1, And(S(1) <= i, i <= 3)), (0, True))
    assert ds(KD(i, j), (j, 1, 1)) == Piecewise((1, Eq(i, 1)), (0, True))
    assert ds(KD(i, j), (j, 2, 2)) == Piecewise((1, Eq(i, 2)), (0, True))
    assert ds(KD(i, j), (j, 3, 3)) == Piecewise((1, Eq(i, 3)), (0, True))
    assert ds(KD(i, j), (j, 1, k)) == \
        Piecewise((1, And(S(1) <= i, i <= k)), (0, True))
    assert ds(KD(i, j), (j, k, 3)) == \
        Piecewise((1, And(k <= i, i <= 3)), (0, True))
    assert ds(KD(i, j), (j, k, l)) == \
        Piecewise((1, And(k <= i, i <= l)), (0, True))

    assert ds(x*KD(i, j), (j, 1, 3)) == \
        Piecewise((x, And(S(1) <= i, i <= 3)), (0, True))
    assert ds(x*KD(i, j), (j, 1, 1)) == Piecewise((x, Eq(i, 1)), (0, True))
    assert ds(x*KD(i, j), (j, 2, 2)) == Piecewise((x, Eq(i, 2)), (0, True))
    assert ds(x*KD(i, j), (j, 3, 3)) == Piecewise((x, Eq(i, 3)), (0, True))
    assert ds(x*KD(i, j), (j, 1, k)) == \
        Piecewise((x, And(S(1) <= i, i <= k)), (0, True))
    assert ds(x*KD(i, j), (j, k, 3)) == \
        Piecewise((x, And(k <= i, i <= 3)), (0, True))
    assert ds(x*KD(i, j), (j, k, l)) == \
        Piecewise((x, And(k <= i, i <= l)), (0, True))

    assert ds((x + y)*KD(i, j), (j, 1, 3)) == \
        Piecewise((x + y, And(S(1) <= i, i <= 3)), (0, True))
    assert ds((x + y)*KD(i, j), (j, 1, 1)) == \
        Piecewise((x + y, Eq(i, 1)), (0, True))
    assert ds((x + y)*KD(i, j), (j, 2, 2)) == \
        Piecewise((x + y, Eq(i, 2)), (0, True))
    assert ds((x + y)*KD(i, j), (j, 3, 3)) == \
        Piecewise((x + y, Eq(i, 3)), (0, True))
    assert ds((x + y)*KD(i, j), (j, 1, k)) == \
        Piecewise((x + y, And(S(1) <= i, i <= k)), (0, True))
    assert ds((x + y)*KD(i, j), (j, k, 3)) == \
        Piecewise((x + y, And(k <= i, i <= 3)), (0, True))
    assert ds((x + y)*KD(i, j), (j, k, l)) == \
        Piecewise((x + y, And(k <= i, i <= l)), (0, True))

    assert ds(KD(i, k) + KD(j, k), (k, 1, 3)) == piecewise_fold(
        Piecewise((1, And(S(1) <= i, i <= 3)), (0, True)) +
        Piecewise((1, And(S(1) <= j, j <= 3)), (0, True)))
    assert ds(KD(i, k) + KD(j, k), (k, 1, 1)) == piecewise_fold(
        Piecewise((1, Eq(i, 1)), (0, True)) +
        Piecewise((1, Eq(j, 1)), (0, True)))
    assert ds(KD(i, k) + KD(j, k), (k, 2, 2)) == piecewise_fold(
        Piecewise((1, Eq(i, 2)), (0, True)) +
        Piecewise((1, Eq(j, 2)), (0, True)))
    assert ds(KD(i, k) + KD(j, k), (k, 3, 3)) == piecewise_fold(
        Piecewise((1, Eq(i, 3)), (0, True)) +
        Piecewise((1, Eq(j, 3)), (0, True)))
    assert ds(KD(i, k) + KD(j, k), (k, 1, l)) == piecewise_fold(
        Piecewise((1, And(S(1) <= i, i <= l)), (0, True)) +
        Piecewise((1, And(S(1) <= j, j <= l)), (0, True)))
    assert ds(KD(i, k) + KD(j, k), (k, l, 3)) == piecewise_fold(
        Piecewise((1, And(l <= i, i <= 3)), (0, True)) +
        Piecewise((1, And(l <= j, j <= 3)), (0, True)))
    assert ds(KD(i, k) + KD(j, k), (k, l, m)) == piecewise_fold(
        Piecewise((1, And(l <= i, i <= m)), (0, True)) +
        Piecewise((1, And(l <= j, j <= m)), (0, True)))

    assert ds(x*KD(i, k) + KD(j, k), (k, 1, 3)) == piecewise_fold(
        Piecewise((x, And(S(1) <= i, i <= 3)), (0, True)) +
        Piecewise((1, And(S(1) <= j, j <= 3)), (0, True)))
    assert ds(x*KD(i, k) + KD(j, k), (k, 1, 1)) == piecewise_fold(
        Piecewise((x, Eq(i, 1)), (0, True)) +
        Piecewise((1, Eq(j, 1)), (0, True)))
    assert ds(x*KD(i, k) + KD(j, k), (k, 2, 2)) == piecewise_fold(
        Piecewise((x, Eq(i, 2)), (0, True)) +
        Piecewise((1, Eq(j, 2)), (0, True)))
    assert ds(x*KD(i, k) + KD(j, k), (k, 3, 3)) == piecewise_fold(
        Piecewise((x, Eq(i, 3)), (0, True)) +
        Piecewise((1, Eq(j, 3)), (0, True)))
    assert ds(x*KD(i, k) + KD(j, k), (k, 1, l)) == piecewise_fold(
        Piecewise((x, And(S(1) <= i, i <= l)), (0, True)) +
        Piecewise((1, And(S(1) <= j, j <= l)), (0, True)))
    assert ds(x*KD(i, k) + KD(j, k), (k, l, 3)) == piecewise_fold(
        Piecewise((x, And(l <= i, i <= 3)), (0, True)) +
        Piecewise((1, And(l <= j, j <= 3)), (0, True)))
    assert ds(x*KD(i, k) + KD(j, k), (k, l, m)) == piecewise_fold(
        Piecewise((x, And(l <= i, i <= m)), (0, True)) +
        Piecewise((1, And(l <= j, j <= m)), (0, True)))

    assert ds(x*(KD(i, k) + KD(j, k)), (k, 1, 3)) == piecewise_fold(
        Piecewise((x, And(S(1) <= i, i <= 3)), (0, True)) +
        Piecewise((x, And(S(1) <= j, j <= 3)), (0, True)))
    assert ds(x*(KD(i, k) + KD(j, k)), (k, 1, 1)) == piecewise_fold(
        Piecewise((x, Eq(i, 1)), (0, True)) +
        Piecewise((x, Eq(j, 1)), (0, True)))
    assert ds(x*(KD(i, k) + KD(j, k)), (k, 2, 2)) == piecewise_fold(
        Piecewise((x, Eq(i, 2)), (0, True)) +
        Piecewise((x, Eq(j, 2)), (0, True)))
    assert ds(x*(KD(i, k) + KD(j, k)), (k, 3, 3)) == piecewise_fold(
        Piecewise((x, Eq(i, 3)), (0, True)) +
        Piecewise((x, Eq(j, 3)), (0, True)))
    assert ds(x*(KD(i, k) + KD(j, k)), (k, 1, l)) == piecewise_fold(
        Piecewise((x, And(S(1) <= i, i <= l)), (0, True)) +
        Piecewise((x, And(S(1) <= j, j <= l)), (0, True)))
    assert ds(x*(KD(i, k) + KD(j, k)), (k, l, 3)) == piecewise_fold(
        Piecewise((x, And(l <= i, i <= 3)), (0, True)) +
        Piecewise((x, And(l <= j, j <= 3)), (0, True)))
    assert ds(x*(KD(i, k) + KD(j, k)), (k, l, m)) == piecewise_fold(
        Piecewise((x, And(l <= i, i <= m)), (0, True)) +
        Piecewise((x, And(l <= j, j <= m)), (0, True)))

    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 1, 3)) == piecewise_fold(
        Piecewise((x + y, And(S(1) <= i, i <= 3)), (0, True)) +
        Piecewise((x + y, And(S(1) <= j, j <= 3)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 1, 1)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 1)), (0, True)) +
        Piecewise((x + y, Eq(j, 1)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 2, 2)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 2)), (0, True)) +
        Piecewise((x + y, Eq(j, 2)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 3, 3)) == piecewise_fold(
        Piecewise((x + y, Eq(i, 3)), (0, True)) +
        Piecewise((x + y, Eq(j, 3)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, 1, l)) == piecewise_fold(
        Piecewise((x + y, And(S(1) <= i, i <= l)), (0, True)) +
        Piecewise((x + y, And(S(1) <= j, j <= l)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, l, 3)) == piecewise_fold(
        Piecewise((x + y, And(l <= i, i <= 3)), (0, True)) +
        Piecewise((x + y, And(l <= j, j <= 3)), (0, True)))
    assert ds((x + y)*(KD(i, k) + KD(j, k)), (k, l, m)) == piecewise_fold(
        Piecewise((x + y, And(l <= i, i <= m)), (0, True)) +
        Piecewise((x + y, And(l <= j, j <= m)), (0, True)))

    assert ds(x*y + x*KD(i, j), (j, 1, 3)) == \
        Piecewise((3*x*y + x, And(S(1) <= i, i <= 3)), (3*x*y, True))
    assert ds(x*y + x*KD(i, j), (j, 1, 1)) == \
        Piecewise((x*y + x, Eq(i, 1)), (x*y, True))
    assert ds(x*y + x*KD(i, j), (j, 2, 2)) == \
        Piecewise((x*y + x, Eq(i, 2)), (x*y, True))
    assert ds(x*y + x*KD(i, j), (j, 3, 3)) == \
        Piecewise((x*y + x, Eq(i, 3)), (x*y, True))
    assert ds(x*y + x*KD(i, j), (j, 1, k)) == \
        Piecewise((k*x*y + x, And(S(1) <= i, i <= k)), (k*x*y, True))
    assert ds(x*y + x*KD(i, j), (j, k, 3)) == \
        Piecewise(((4 - k)*x*y + x, And(k <= i, i <= 3)), ((4 - k)*x*y, True))
    assert ds(x*y + x*KD(i, j), (j, k, l)) == Piecewise(
        ((l - k + 1)*x*y + x, And(k <= i, i <= l)), ((l - k + 1)*x*y, True))

    assert ds(x*(y + KD(i, j)), (j, 1, 3)) == \
        Piecewise((3*x*y + x, And(S(1) <= i, i <= 3)), (3*x*y, True))
    assert ds(x*(y + KD(i, j)), (j, 1, 1)) == \
        Piecewise((x*y + x, Eq(i, 1)), (x*y, True))
    assert ds(x*(y + KD(i, j)), (j, 2, 2)) == \
        Piecewise((x*y + x, Eq(i, 2)), (x*y, True))
    assert ds(x*(y + KD(i, j)), (j, 3, 3)) == \
        Piecewise((x*y + x, Eq(i, 3)), (x*y, True))
    assert ds(x*(y + KD(i, j)), (j, 1, k)) == \
        Piecewise((k*x*y + x, And(S(1) <= i, i <= k)), (k*x*y, True))
    assert ds(x*(y + KD(i, j)), (j, k, 3)) == \
        Piecewise(((4 - k)*x*y + x, And(k <= i, i <= 3)), ((4 - k)*x*y, True))
    assert ds(x*(y + KD(i, j)), (j, k, l)) == Piecewise(
        ((l - k + 1)*x*y + x, And(k <= i, i <= l)), ((l - k + 1)*x*y, True))

    assert ds(x*(y + 2*KD(i, j)), (j, 1, 3)) == \
        Piecewise((3*x*y + 2*x, And(S(1) <= i, i <= 3)), (3*x*y, True))
    assert ds(x*(y + 2*KD(i, j)), (j, 1, 1)) == \
        Piecewise((x*y + 2*x, Eq(i, 1)), (x*y, True))
    assert ds(x*(y + 2*KD(i, j)), (j, 2, 2)) == \
        Piecewise((x*y + 2*x, Eq(i, 2)), (x*y, True))
    assert ds(x*(y + 2*KD(i, j)), (j, 3, 3)) == \
        Piecewise((x*y + 2*x, Eq(i, 3)), (x*y, True))
    assert ds(x*(y + 2*KD(i, j)), (j, 1, k)) == \
        Piecewise((k*x*y + 2*x, And(S(1) <= i, i <= k)), (k*x*y, True))
    assert ds(x*(y + 2*KD(i, j)), (j, k, 3)) == Piecewise(
        ((4 - k)*x*y + 2*x, And(k <= i, i <= 3)), ((4 - k)*x*y, True))
    assert ds(x*(y + 2*KD(i, j)), (j, k, l)) == Piecewise(
        ((l - k + 1)*x*y + 2*x, And(k <= i, i <= l)), ((l - k + 1)*x*y, True))

    assert ds((x + y)*(y + KD(i, j)), (j, 1, 3)) == Piecewise(
        (3*(x + y)*y + x + y, And(S(1) <= i, i <= 3)), (3*(x + y)*y, True))
    assert ds((x + y)*(y + KD(i, j)), (j, 1, 1)) == \
        Piecewise(((x + y)*y + x + y, Eq(i, 1)), ((x + y)*y, True))
    assert ds((x + y)*(y + KD(i, j)), (j, 2, 2)) == \
        Piecewise(((x + y)*y + x + y, Eq(i, 2)), ((x + y)*y, True))
    assert ds((x + y)*(y + KD(i, j)), (j, 3, 3)) == \
        Piecewise(((x + y)*y + x + y, Eq(i, 3)), ((x + y)*y, True))
    assert ds((x + y)*(y + KD(i, j)), (j, 1, k)) == Piecewise(
        (k*(x + y)*y + x + y, And(S(1) <= i, i <= k)), (k*(x + y)*y, True))
    assert ds((x + y)*(y + KD(i, j)), (j, k, 3)) == Piecewise(
        ((4 - k)*(x + y)*y + x + y, And(k <= i, i <= 3)),
        ((4 - k)*(x + y)*y, True))
    assert ds((x + y)*(y + KD(i, j)), (j, k, l)) == Piecewise(
        ((l - k + 1)*(x + y)*y + x + y, And(k <= i, i <= l)),
        ((l - k + 1)*(x + y)*y, True))

    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 1, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(S(1) <= i, i <= 3)), (0, True)) +
        3*(KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 1, 1)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 1)), (0, True)) +
        (KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 2, 2)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 2)), (0, True)) +
        (KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 3, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, Eq(i, 3)), (0, True)) +
        (KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, 1, k)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(S(1) <= i, i <= k)), (0, True)) +
        k*(KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, k, 3)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(k <= i, i <= 3)), (0, True)) +
        (4 - k)*(KD(i, k) + x)*y)
    assert ds((x + KD(i, k))*(y + KD(i, j)), (j, k, l)) == piecewise_fold(
        Piecewise((KD(i, k) + x, And(k <= i, i <= l)), (0, True)) +
        (l - k + 1)*(KD(i, k) + x)*y)
示例#21
0
def simplify(expr, ratio=1.7, measure=count_ops, rational=False):
    # type: (object, object, object, object) -> object
    """
    Simplifies the given expression.

    Simplification is not a well defined term and the exact strategies
    this function tries can change in the future versions of SymPy. If
    your algorithm relies on "simplification" (whatever it is), try to
    determine what you need exactly  -  is it powsimp()?, radsimp()?,
    together()?, logcombine()?, or something else? And use this particular
    function directly, because those are well defined and thus your algorithm
    will be robust.

    Nonetheless, especially for interactive use, or when you don't know
    anything about the structure of the expression, simplify() tries to apply
    intelligent heuristics to make the input expression "simpler".  For
    example:

    >>> from sympy import simplify, cos, sin
    >>> from sympy.abc import x, y
    >>> a = (x + x**2)/(x*sin(y)**2 + x*cos(y)**2)
    >>> a
    (x**2 + x)/(x*sin(y)**2 + x*cos(y)**2)
    >>> simplify(a)
    x + 1

    Note that we could have obtained the same result by using specific
    simplification functions:

    >>> from sympy import trigsimp, cancel
    >>> trigsimp(a)
    (x**2 + x)/x
    >>> cancel(_)
    x + 1

    In some cases, applying :func:`simplify` may actually result in some more
    complicated expression. The default ``ratio=1.7`` prevents more extreme
    cases: if (result length)/(input length) > ratio, then input is returned
    unmodified.  The ``measure`` parameter lets you specify the function used
    to determine how complex an expression is.  The function should take a
    single argument as an expression and return a number such that if
    expression ``a`` is more complex than expression ``b``, then
    ``measure(a) > measure(b)``.  The default measure function is
    :func:`count_ops`, which returns the total number of operations in the
    expression.

    For example, if ``ratio=1``, ``simplify`` output can't be longer
    than input.

    ::

        >>> from sympy import sqrt, simplify, count_ops, oo
        >>> root = 1/(sqrt(2)+3)

    Since ``simplify(root)`` would result in a slightly longer expression,
    root is returned unchanged instead::

       >>> simplify(root, ratio=1) == root
       True

    If ``ratio=oo``, simplify will be applied anyway::

        >>> count_ops(simplify(root, ratio=oo)) > count_ops(root)
        True

    Note that the shortest expression is not necessary the simplest, so
    setting ``ratio`` to 1 may not be a good idea.
    Heuristically, the default value ``ratio=1.7`` seems like a reasonable
    choice.

    You can easily define your own measure function based on what you feel
    should represent the "size" or "complexity" of the input expression.  Note
    that some choices, such as ``lambda expr: len(str(expr))`` may appear to be
    good metrics, but have other problems (in this case, the measure function
    may slow down simplify too much for very large expressions).  If you don't
    know what a good metric would be, the default, ``count_ops``, is a good
    one.

    For example:

    >>> from sympy import symbols, log
    >>> a, b = symbols('a b', positive=True)
    >>> g = log(a) + log(b) + log(a)*log(1/b)
    >>> h = simplify(g)
    >>> h
    log(a*b**(-log(a) + 1))
    >>> count_ops(g)
    8
    >>> count_ops(h)
    5

    So you can see that ``h`` is simpler than ``g`` using the count_ops metric.
    However, we may not like how ``simplify`` (in this case, using
    ``logcombine``) has created the ``b**(log(1/a) + 1)`` term.  A simple way
    to reduce this would be to give more weight to powers as operations in
    ``count_ops``.  We can do this by using the ``visual=True`` option:

    >>> print(count_ops(g, visual=True))
    2*ADD + DIV + 4*LOG + MUL
    >>> print(count_ops(h, visual=True))
    2*LOG + MUL + POW + SUB

    >>> from sympy import Symbol, S
    >>> def my_measure(expr):
    ...     POW = Symbol('POW')
    ...     # Discourage powers by giving POW a weight of 10
    ...     count = count_ops(expr, visual=True).subs(POW, 10)
    ...     # Every other operation gets a weight of 1 (the default)
    ...     count = count.replace(Symbol, type(S.One))
    ...     return count
    >>> my_measure(g)
    8
    >>> my_measure(h)
    14
    >>> 15./8 > 1.7 # 1.7 is the default ratio
    True
    >>> simplify(g, measure=my_measure)
    -log(a)*log(b) + log(a) + log(b)

    Note that because ``simplify()`` internally tries many different
    simplification strategies and then compares them using the measure
    function, we get a completely different result that is still different
    from the input expression by doing this.

    If rational=True, Floats will be recast as Rationals before simplification.
    If rational=None, Floats will be recast as Rationals but the result will
    be recast as Floats. If rational=False(default) then nothing will be done
    to the Floats.
    """
    expr = sympify(expr)

    try:
        return expr._eval_simplify(ratio=ratio, measure=measure)
    except AttributeError:
        pass

    original_expr = expr = signsimp(expr)

    from sympy.simplify.hyperexpand import hyperexpand
    from sympy.functions.special.bessel import BesselBase
    from sympy import Sum, Product

    if not isinstance(expr, Basic) or not expr.args:  # XXX: temporary hack
        return expr

    if not isinstance(expr, (Add, Mul, Pow, ExpBase)):
        if isinstance(expr, Function) and hasattr(expr, "inverse"):
            if len(expr.args) == 1 and len(expr.args[0].args) == 1 and \
               isinstance(expr.args[0], expr.inverse(argindex=1)):
                return simplify(expr.args[0].args[0], ratio=ratio,
                                measure=measure, rational=rational)
        return expr.func(*[simplify(x, ratio=ratio, measure=measure, rational=rational)
                         for x in expr.args])

    # TODO: Apply different strategies, considering expression pattern:
    # is it a purely rational function? Is there any trigonometric function?...
    # See also https://github.com/sympy/sympy/pull/185.

    def shorter(*choices):
        '''Return the choice that has the fewest ops. In case of a tie,
        the expression listed first is selected.'''
        if not has_variety(choices):
            return choices[0]
        return min(choices, key=measure)

    # rationalize Floats
    floats = False
    if rational is not False and expr.has(Float):
        floats = True
        expr = nsimplify(expr, rational=True)

    expr = bottom_up(expr, lambda w: w.normal())
    expr = Mul(*powsimp(expr).as_content_primitive())
    _e = cancel(expr)
    expr1 = shorter(_e, _mexpand(_e).cancel())  # issue 6829
    expr2 = shorter(together(expr, deep=True), together(expr1, deep=True))

    if ratio is S.Infinity:
        expr = expr2
    else:
        expr = shorter(expr2, expr1, expr)
    if not isinstance(expr, Basic):  # XXX: temporary hack
        return expr

    expr = factor_terms(expr, sign=False)

    # hyperexpand automatically only works on hypergeometric terms
    expr = hyperexpand(expr)

    expr = piecewise_fold(expr)

    if expr.has(BesselBase):
        expr = besselsimp(expr)

    if expr.has(TrigonometricFunction, HyperbolicFunction):
        expr = trigsimp(expr, deep=True)

    if expr.has(log):
        expr = shorter(expand_log(expr, deep=True), logcombine(expr))

    if expr.has(CombinatorialFunction, gamma):
        # expression with gamma functions or non-integer arguments is
        # automatically passed to gammasimp
        expr = combsimp(expr)

    if expr.has(Sum):
        expr = sum_simplify(expr)

    if expr.has(Product):
        expr = product_simplify(expr)

    short = shorter(powsimp(expr, combine='exp', deep=True), powsimp(expr), expr)
    short = shorter(short, cancel(short))
    short = shorter(short, factor_terms(short), expand_power_exp(expand_mul(short)))
    if short.has(TrigonometricFunction, HyperbolicFunction, ExpBase):
        short = exptrigsimp(short)

    # get rid of hollow 2-arg Mul factorization
    hollow_mul = Transform(
        lambda x: Mul(*x.args),
        lambda x:
        x.is_Mul and
        len(x.args) == 2 and
        x.args[0].is_Number and
        x.args[1].is_Add and
        x.is_commutative)
    expr = short.xreplace(hollow_mul)

    numer, denom = expr.as_numer_denom()
    if denom.is_Add:
        n, d = fraction(radsimp(1/denom, symbolic=False, max_terms=1))
        if n is not S.One:
            expr = (numer*n).expand()/d

    if expr.could_extract_minus_sign():
        n, d = fraction(expr)
        if d != 0:
            expr = signsimp(-n/(-d))

    if measure(expr) > ratio*measure(original_expr):
        expr = original_expr

    # restore floats
    if floats and rational is None:
        expr = nfloat(expr, exponent=False)

    return expr
示例#22
0
文件: bsplines.py 项目: certik/sympy
def _add_splines(c, b1, d, b2):
    """Construct c*b1 + d*b2."""
    if b1 == S.Zero or c == S.Zero:
        rv = piecewise_fold(d*b2)
    elif b2 == S.Zero or d == S.Zero:
        rv = piecewise_fold(c*b1)
    else:
        new_args = []
        n_intervals = len(b1.args)
        if n_intervals != len(b2.args):
            # Args of b1 and b2 are not equal. Just combining the Piecewise without any fancy optimisation
            p1 = piecewise_fold(c*b1)
            p2 = piecewise_fold(d*b2)

            # Search all Piecewise arguments except (0, True)
            p2args = list(p2.args[:-1])

            # This merging algorithm assume the conditions in p1 and p2 are sorted
            for arg in p1.args[:-1]:
                # Conditional of Piecewise are And objects
                # the args of the And object is a tuple of two Relational objects
                # the numerical value is in the .rhs of the Relational object
                expr = arg.expr
                cond = arg.cond

                lower = cond.args[0].rhs

                # Check p2 for matching conditions that can be merged
                for i, arg2 in enumerate(p2args):
                    expr2 = arg2.expr
                    cond2 = arg2.cond

                    lower_2 = cond2.args[0].rhs
                    upper_2 = cond2.args[1].rhs

                    if cond2 == cond:
                        # Conditions match, join expressions
                        expr += expr2
                        # Remove matching element
                        del p2args[i]
                        # No need to check the rest
                        break
                    elif lower_2 < lower and upper_2 <= lower:
                        # Check if arg2 condition smaller than arg1, add to new_args by itself (no match expected in p1)
                        new_args.append(arg2)
                        del p2args[i]
                        break

                # Checked all, add expr and cond
                new_args.append((expr, cond))

            # Add remaining items from p2args
            new_args.extend(p2args)

            # Add final (0, True)
            new_args.append((0, True))
        else:
            new_args.append((c*b1.args[0].expr, b1.args[0].cond))
            for i in range(1, n_intervals - 1):
                new_args.append((
                    c*b1.args[i].expr + d*b2.args[i - 1].expr,
                    b1.args[i].cond
                ))
            new_args.append((d*b2.args[-2].expr, b2.args[-2].cond))
            new_args.append(b2.args[-1])

        rv = Piecewise(*new_args)

    return rv.expand()