示例#1
0
def test_DiagonalizeVector():
    x = MatrixSymbol('x', n, 1)
    d = DiagonalizeVector(x)
    assert d.shape == (n, n)
    assert d[0, 1] == 0
    assert d[0, 0] == x[0, 0]

    a = MatrixSymbol('a', 1, 1)
    d = diagonalize_vector(a)
    assert isinstance(d, MatrixSymbol)
    assert a == d
    assert diagonalize_vector(Identity(3)) == Identity(3)
    assert DiagonalizeVector(Identity(3)).doit() == Identity(3)
    assert isinstance(DiagonalizeVector(Identity(3)), DiagonalizeVector)

    # A diagonal matrix is equal to its transpose:
    assert DiagonalizeVector(x).T == DiagonalizeVector(x)
    assert diagonalize_vector(x.T) == DiagonalizeVector(x)

    dx = DiagonalizeVector(x)
    assert dx[0, 0] == x[0, 0]
    assert dx[1, 1] == x[1, 0]
    assert dx[0, 1] == 0
    assert dx[0, m] == x[0, 0]*KroneckerDelta(0, m)

    z = MatrixSymbol('z', 1, n)
    dz = DiagonalizeVector(z)
    assert dz[0, 0] == z[0, 0]
    assert dz[1, 1] == z[0, 1]
    assert dz[0, 1] == 0
    assert dz[0, m] == z[0, m]*KroneckerDelta(0, m)

    v = MatrixSymbol('v', 3, 1)
    dv = DiagonalizeVector(v)
    assert dv.as_explicit() == Matrix([
        [v[0, 0], 0, 0],
        [0, v[1, 0], 0],
        [0, 0, v[2, 0]],
    ])

    v = MatrixSymbol('v', 1, 3)
    dv = DiagonalizeVector(v)
    assert dv.as_explicit() == Matrix([
        [v[0, 0], 0, 0],
        [0, v[0, 1], 0],
        [0, 0, v[0, 2]],
    ])

    dv = DiagonalizeVector(3*v)
    assert dv.args == (3*v,)
    assert dv.doit() == 3*DiagonalizeVector(v)
    assert isinstance(dv.doit(), MatMul)
示例#2
0
def test_DiagonalizeVector():
    x = MatrixSymbol('x', n, 1)
    d = DiagonalizeVector(x)
    assert d.shape == (n, n)
    assert d[0, 1] == 0
    assert d[0, 0] == x[0, 0]

    a = MatrixSymbol('a', 1, 1)
    d = diagonalize_vector(a)
    assert isinstance(d, MatrixSymbol)
    assert a == d
    assert diagonalize_vector(Identity(3)) == Identity(3)
    assert DiagonalizeVector(Identity(3)).doit() == Identity(3)
    assert isinstance(DiagonalizeVector(Identity(3)), DiagonalizeVector)

    # A diagonal matrix is equal to its transpose:
    assert DiagonalizeVector(x).T == DiagonalizeVector(x)
    assert diagonalize_vector(x.T) == DiagonalizeVector(x)

    dx = DiagonalizeVector(x)
    assert dx[0, 0] == x[0, 0]
    assert dx[1, 1] == x[1, 0]
    assert dx[0, 1] == 0
    assert dx[0, m] == x[0, 0] * KroneckerDelta(0, m)

    z = MatrixSymbol('z', 1, n)
    dz = DiagonalizeVector(z)
    assert dz[0, 0] == z[0, 0]
    assert dz[1, 1] == z[0, 1]
    assert dz[0, 1] == 0
    assert dz[0, m] == z[0, m] * KroneckerDelta(0, m)

    v = MatrixSymbol('v', 3, 1)
    dv = DiagonalizeVector(v)
    assert dv.as_explicit() == Matrix([
        [v[0, 0], 0, 0],
        [0, v[1, 0], 0],
        [0, 0, v[2, 0]],
    ])

    v = MatrixSymbol('v', 1, 3)
    dv = DiagonalizeVector(v)
    assert dv.as_explicit() == Matrix([
        [v[0, 0], 0, 0],
        [0, v[0, 1], 0],
        [0, 0, v[0, 2]],
    ])

    dv = DiagonalizeVector(3 * v)
    assert dv.args == (3 * v, )
    assert dv.doit() == 3 * DiagonalizeVector(v)
    assert isinstance(dv.doit(), MatMul)
示例#3
0
def test_DiagonalizeVector():
    x = MatrixSymbol('x', n, 1)
    d = DiagonalizeVector(x)
    assert d.shape == (n, n)
    assert d[0, 1] == 0
    assert d[0, 0] == x[0, 0]

    a = MatrixSymbol('a', 1, 1)
    d = diagonalize_vector(a)
    assert isinstance(d, MatrixSymbol)
    assert a == d
示例#4
0
 def _eval_derivative_matrix_lines(self, x):
     d = Dummy("d")
     function = self.function(d)
     fdiff = function.fdiff()
     if isinstance(fdiff, Function):
         fdiff = type(fdiff)
     else:
         fdiff = Lambda(d, fdiff)
     lr = self.expr._eval_derivative_matrix_lines(x)
     if 1 in self.shape:
         # Vector:
         ewdiff = ElementwiseApplyFunction(fdiff, self.expr)
         ewdiff = diagonalize_vector(ewdiff)
         # is it a vector or a matrix or a scalar?
         lr[0].first *= ewdiff
         return lr
     else:
         # Matrix case:
         raise NotImplementedError
示例#5
0
def test_DiagMatrix():
    x = MatrixSymbol("x", n, 1)
    d = DiagMatrix(x)
    assert d.shape == (n, n)
    assert d[0, 1] == 0
    assert d[0, 0] == x[0, 0]

    a = MatrixSymbol("a", 1, 1)
    d = diagonalize_vector(a)
    assert isinstance(d, MatrixSymbol)
    assert a == d
    assert diagonalize_vector(Identity(3)) == Identity(3)
    assert DiagMatrix(Identity(3)).doit() == Identity(3)
    assert isinstance(DiagMatrix(Identity(3)), DiagMatrix)

    # A diagonal matrix is equal to its transpose:
    assert DiagMatrix(x).T == DiagMatrix(x)
    assert diagonalize_vector(x.T) == DiagMatrix(x)

    dx = DiagMatrix(x)
    assert dx[0, 0] == x[0, 0]
    assert dx[1, 1] == x[1, 0]
    assert dx[0, 1] == 0
    assert dx[0, m] == x[0, 0] * KroneckerDelta(0, m)

    z = MatrixSymbol("z", 1, n)
    dz = DiagMatrix(z)
    assert dz[0, 0] == z[0, 0]
    assert dz[1, 1] == z[0, 1]
    assert dz[0, 1] == 0
    assert dz[0, m] == z[0, m] * KroneckerDelta(0, m)

    v = MatrixSymbol("v", 3, 1)
    dv = DiagMatrix(v)
    assert dv.as_explicit() == Matrix([
        [v[0, 0], 0, 0],
        [0, v[1, 0], 0],
        [0, 0, v[2, 0]],
    ])

    v = MatrixSymbol("v", 1, 3)
    dv = DiagMatrix(v)
    assert dv.as_explicit() == Matrix([
        [v[0, 0], 0, 0],
        [0, v[0, 1], 0],
        [0, 0, v[0, 2]],
    ])

    dv = DiagMatrix(3 * v)
    assert dv.args == (3 * v, )
    assert dv.doit() == 3 * DiagMatrix(v)
    assert isinstance(dv.doit(), MatMul)

    a = MatrixSymbol("a", 3, 1).as_explicit()
    expr = DiagMatrix(a)
    result = Matrix([
        [a[0, 0], 0, 0],
        [0, a[1, 0], 0],
        [0, 0, a[2, 0]],
    ])
    assert expr.doit() == result
    expr = DiagMatrix(a.T)
    assert expr.doit() == result
示例#6
0
文件: applyfunc.py 项目: wkrea/sympy
    def _eval_derivative_matrix_lines(self, x):
        from sympy import HadamardProduct, hadamard_product, Mul, MatMul, Identity, Transpose
        from sympy.matrices.expressions.diagonal import diagonalize_vector
        from sympy.matrices.expressions.matmul import validate as matmul_validate
        from sympy.core.expr import ExprBuilder

        d = Dummy("d")
        function = self.function(d)
        fdiff = function.fdiff()
        if isinstance(fdiff, Function):
            fdiff = type(fdiff)
        else:
            fdiff = Lambda(d, fdiff)
        lr = self.expr._eval_derivative_matrix_lines(x)
        ewdiff = ElementwiseApplyFunction(fdiff, self.expr)
        if 1 in x.shape:
            # Vector:
            iscolumn = self.shape[1] == 1
            ewdiff = diagonalize_vector(ewdiff)
            # TODO: check which axis is not 1
            for i in lr:
                if iscolumn:
                    ptr1 = [i.first_pointer]
                    ptr2 = [Identity(ewdiff.shape[0])]
                else:
                    ptr1 = [Identity(ewdiff.shape[1])]
                    ptr2 = [i.second_pointer]

                # TODO: check if pointers point to two different lines:

                def mul(*args):
                    return Mul.fromiter(args)

                def hadamard_or_mul(arg1, arg2):
                    if arg1.shape == arg2.shape:
                        return hadamard_product(arg1, arg2)
                    elif arg1.shape[1] == arg2.shape[0]:
                        return MatMul(arg1, arg2).doit()
                    elif arg1.shape[0] == arg2.shape[0]:
                        return MatMul(arg2.T, arg1).doit()
                    raise NotImplementedError

                i._lines = [[
                    hadamard_or_mul, [[mul, [ewdiff, ptr1[0]]], ptr2[0]]
                ]]
                i._first_pointer_parent = i._lines[0][1][0][1]
                i._first_pointer_index = 1
                i._second_pointer_parent = i._lines[0][1]
                i._second_pointer_index = 1

        else:
            # Matrix case:
            for i in lr:
                ptr1 = [i.first_pointer]
                ptr2 = [i.second_pointer]
                newptr1 = Identity(ptr1[0].shape[1])
                newptr2 = Identity(ptr2[0].shape[1])
                subexpr1 = ExprBuilder(
                    MatMul,
                    [ptr1[0],
                     ExprBuilder(diagonalize_vector, [newptr1])],
                    validator=matmul_validate,
                )
                subexpr2 = ExprBuilder(
                    Transpose,
                    [
                        ExprBuilder(
                            MatMul,
                            [
                                ptr2[0],
                                ExprBuilder(diagonalize_vector, [newptr2]),
                            ],
                        )
                    ],
                    validator=matmul_validate,
                )
                i.first_pointer = subexpr1
                i.second_pointer = subexpr2
                i._first_pointer_parent = subexpr1.args[1].args
                i._first_pointer_index = 0
                i._second_pointer_parent = subexpr2.args[0].args[1].args
                i._second_pointer_index = 0
                # TODO: check if pointers point to two different lines:

                # Unify lines:
                l = i._lines
                # TODO: check nested fucntions, e.g. log(sin(...)), the second function should be a scalar one.
                i._lines = [
                    ExprBuilder(MatMul, [l[0], ewdiff, l[1]],
                                validator=matmul_validate)
                ]
        return lr