def hessian(f, varlist): """Compute Hessian matrix for a function f see: http://en.wikipedia.org/wiki/Hessian_matrix See Also ======== sympy.matrices.mutable.Matrix.jacobian wronskian """ # f is the expression representing a function f, return regular matrix if is_sequence(varlist): m = len(varlist) if not m: raise ShapeError("`len(varlist)` must not be zero.") elif isinstance(varlist, MatrixBase): m = varlist.cols if not m: raise ShapeError("`varlist.cols` must not be zero.") if varlist.rows != 1: raise ShapeError("`varlist` must be a row vector.") else: raise ValueError("Improper variable list in hessian function") if not getattr(f, 'diff'): # check differentiability raise ValueError("Function `f` (%s) is not differentiable" % f) out = zeros(m) for i in range(m): for j in range(i, m): out[i, j] = f.diff(varlist[i]).diff(varlist[j]) for i in range(m): for j in range(i): out[i, j] = out[j, i] return out
def copyin_matrix(self, key, value): """Copy in values from a matrix into the given bounds. Parameters ========== key : slice The section of this matrix to replace. value : Matrix The matrix to copy values from. Examples ======== >>> from sympy.matrices import Matrix, eye >>> M = Matrix([[0, 1], [2, 3], [4, 5]]) >>> I = eye(3) >>> I[:3, :2] = M >>> I Matrix([ [0, 1, 0], [2, 3, 0], [4, 5, 1]]) >>> I[0, 1] = M >>> I Matrix([ [0, 0, 1], [2, 2, 3], [4, 4, 5]]) See Also ======== copyin_list """ rlo, rhi, clo, chi = self.key2bounds(key) shape = value.shape dr, dc = rhi - rlo, chi - clo if shape != (dr, dc): raise ShapeError( filldedent("The Matrix `value` doesn't have the " "same dimensions " "as the in sub-Matrix given by `key`.")) for i in range(value.rows): for j in range(value.cols): self[i + rlo, j + clo] = value[i, j]
def __new__(cls, lhs, rhs, rel_cls, assert_symmetry=True): lhs = sympify(lhs) rhs = sympify(rhs) if assert_symmetry: if lhs.is_Matrix and hasattr(lhs, 'is_symmetric') and \ not lhs.is_symmetric(): raise NonSymmetricMatrixError('lhs matrix is not symmetric') if rhs.is_Matrix and hasattr(rhs, 'is_symmetric') and \ not rhs.is_symmetric(): raise NonSymmetricMatrixError('rsh matrix is not symmetric') if lhs.is_Matrix and rhs.is_Matrix: if lhs.shape != rhs.shape: raise ShapeError('LMI matrices have different shapes') elif not ((lhs.is_Matrix and rhs.is_zero) or (lhs.is_zero and rhs.is_Matrix)): raise ValueError('LMI sides must be two matrices ' 'or a matrix and a zero') return rel_cls.__new__(cls, lhs, rhs)
def matrix_multiply_elementwise(A, B): """Return the Hadamard product (elementwise product) of A and B >>> from sympy.matrices import matrix_multiply_elementwise >>> from sympy.matrices import Matrix >>> A = Matrix([[0, 1, 2], [3, 4, 5]]) >>> B = Matrix([[1, 10, 100], [100, 10, 1]]) >>> matrix_multiply_elementwise(A, B) [ 0, 10, 200] [300, 40, 5] See Also ======== __mul__ """ if A.shape != B.shape: raise ShapeError() shape = A.shape return classof(A, B)._new(shape[0], shape[1], lambda i, j: A[i, j] * B[i, j])
def hessian(f, varlist, constraints=[]): """Compute Hessian matrix for a function f wrt parameters in varlist which may be given as a sequence or a row/column vector. A list of constraints may optionally be given. Examples ======== >>> from sympy import Function, hessian, pprint >>> from sympy.abc import x, y >>> f = Function('f')(x, y) >>> g1 = Function('g')(x, y) >>> g2 = x**2 + 3*y >>> pprint(hessian(f, (x, y), [g1, g2])) [ d d ] [ 0 0 --(g(x, y)) --(g(x, y)) ] [ dx dy ] [ ] [ 0 0 2*x 3 ] [ ] [ 2 2 ] [d d d ] [--(g(x, y)) 2*x ---(f(x, y)) -----(f(x, y))] [dx 2 dy dx ] [ dx ] [ ] [ 2 2 ] [d d d ] [--(g(x, y)) 3 -----(f(x, y)) ---(f(x, y)) ] [dy dy dx 2 ] [ dy ] References ========== http://en.wikipedia.org/wiki/Hessian_matrix See Also ======== sympy.matrices.mutable.Matrix.jacobian wronskian """ # f is the expression representing a function f, return regular matrix if isinstance(varlist, MatrixBase): if 1 not in varlist.shape: raise ShapeError("`varlist` must be a column or row vector.") if varlist.cols == 1: varlist = varlist.T varlist = varlist.tolist()[0] if is_sequence(varlist): n = len(varlist) if not n: raise ShapeError("`len(varlist)` must not be zero.") else: raise ValueError("Improper variable list in hessian function") if not getattr(f, 'diff'): # check differentiability raise ValueError("Function `f` (%s) is not differentiable" % f) m = len(constraints) N = m + n out = zeros(N) for k, g in enumerate(constraints): if not getattr(g, 'diff'): # check differentiability raise ValueError("Function `f` (%s) is not differentiable" % f) for i in range(n): out[k, i + m] = g.diff(varlist[i]) for i in range(n): for j in range(i, n): out[i + m, j + m] = f.diff(varlist[i]).diff(varlist[j]) for i in range(N): for j in range(i + 1, N): out[j, i] = out[i, j] return out