def test_BlockDiagMatrix(): n,m,l = symbols('n m l', integer=True) A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', m, m) C = MatrixSymbol('C', l, l) M = MatrixSymbol('M', n+m+l, n+m+l) X = BlockDiagMatrix(A,B,C) Y = BlockDiagMatrix(A, 2*B, 3*C) assert X[1,1] == B assert X.shape == (n+m+l, n+m+l) assert all(X[i,j].is_ZeroMatrix if i!=j else X[i,j] in [A,B,C] for i in range(3) for j in range(3)) assert block_collapse(X.I * X).is_Identity assert block_collapse(X*X) == BlockDiagMatrix(A**2, B**2, C**2) assert block_collapse(X+X) == BlockDiagMatrix(2*A, 2*B, 2*C) assert block_collapse(X*Y) == BlockDiagMatrix(A**2, 2*B**2, 3*C**2) assert block_collapse(X+Y) == BlockDiagMatrix(2*A, 3*B, 4*C) # Ensure that BlockDiagMatrices can still interact with normal MatrixExprs assert (X*(2*M)).is_Mul assert (X+(2*M)).is_Add assert (X._blockmul(M)).is_Mul assert (X._blockadd(M)).is_Add
def test_squareBlockMatrix(): n,m,l,k = symbols('n m l k', integer=True) A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, m) C = MatrixSymbol('C', m, n) D = MatrixSymbol('D', m, m) X = BlockMatrix([[A,B],[C,D]]) Y = BlockMatrix([[A]]) assert X.is_square assert block_collapse(X+Identity(m+n)) == BlockMatrix( [[A+Identity(n), B], [C, D+Identity(m)]]) Q = X+Identity(m+n) assert block_collapse(Inverse(Q)) == Inverse(block_collapse(Q)) assert (X + MatrixSymbol('Q', n+m, n+m)).is_Add assert (X * MatrixSymbol('Q', n+m, n+m)).is_Mul assert Y.I[0,0] == A.I assert Inverse(X, expand=True) == BlockMatrix([ [(-B*D.I*C + A).I, -A.I*B*(D+-C*A.I*B).I], [-(D-C*A.I*B).I*C*A.I, (D-C*A.I*B).I]]) assert Inverse(X, expand=False).is_Inverse assert X.inverse().is_Inverse assert not X.is_Identity Z = BlockMatrix([[Identity(n),B],[C,D]]) assert not Z.is_Identity
def test_BlockDiagMatrix(): n, m, l = symbols('n m l', integer=True) A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', m, m) C = MatrixSymbol('C', l, l) M = MatrixSymbol('M', n + m + l, n + m + l) X = BlockDiagMatrix(A, B, C) Y = BlockDiagMatrix(A, 2 * B, 3 * C) assert X.blocks[1, 1] == B assert X.shape == (n + m + l, n + m + l) assert all( X.blocks[i, j].is_ZeroMatrix if i != j else X.blocks[i, j] in [A, B, C] for i in range(3) for j in range(3)) assert block_collapse(X.I * X).is_Identity assert block_collapse(X * X) == BlockDiagMatrix(A * A, B * B, C * C) assert block_collapse(X + X) == BlockDiagMatrix(2 * A, 2 * B, 2 * C) assert block_collapse(X * Y) == BlockDiagMatrix(A * A, 2 * B * B, 3 * C * C) assert block_collapse(X + Y) == BlockDiagMatrix(2 * A, 3 * B, 4 * C) # Ensure that BlockDiagMatrices can still interact with normal MatrixExprs assert (X * (2 * M)).is_Mul assert (X + (2 * M)).is_Add assert (X._blockmul(M)).is_Mul assert (X._blockadd(M)).is_Add
def test_squareBlockMatrix(): n, m, l, k = symbols('n m l k', integer=True) A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, m) C = MatrixSymbol('C', m, n) D = MatrixSymbol('D', m, m) X = BlockMatrix([[A, B], [C, D]]) Y = BlockMatrix([[A]]) assert X.is_square assert block_collapse(X + Identity(m + n)) == BlockMatrix( [[A + Identity(n), B], [C, D + Identity(m)]]) Q = X + Identity(m + n) assert block_collapse(Inverse(Q)) == Inverse(block_collapse(Q)) assert (X + MatrixSymbol('Q', n + m, n + m)).is_Add assert (X * MatrixSymbol('Q', n + m, n + m)).is_Mul assert Y.I.blocks[0, 0] == A.I assert Inverse(X, expand=True) == BlockMatrix([[ (-B * D.I * C + A).I, -A.I * B * (D + -C * A.I * B).I ], [-(D - C * A.I * B).I * C * A.I, (D - C * A.I * B).I]]) assert Inverse(X, expand=False).is_Inverse assert X.inverse().is_Inverse assert not X.is_Identity Z = BlockMatrix([[Identity(n), B], [C, D]]) assert not Z.is_Identity
def test_BlockMatrix(): n,m,l,k,p = symbols('n m l k p', integer=True) A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', n, k) C = MatrixSymbol('C', l, m) D = MatrixSymbol('D', l, k) M = MatrixSymbol('M', m+k, p) N = MatrixSymbol('N', l+n, k+m) X = BlockMatrix(Matrix([[A,B],[C,D]])) # block_collapse does nothing on normal inputs E = MatrixSymbol('E', n, m) assert block_collapse(A+2*E) == A+2*E F = MatrixSymbol('F', m, m) assert block_collapse(E.T*A*F) == E.T*A*F assert X.shape == (l+n, k+m) assert (block_collapse(Transpose(X)) == BlockMatrix(Matrix([[A.T, C.T], [B.T, D.T]]))) assert Transpose(X).shape == X.shape[::-1] assert X.blockshape == (2,2) # Test that BlockMatrices and MatrixSymbols can still mix assert (X*M).is_Mul assert X._blockmul(M).is_Mul assert (X*M).shape == (n+l, p) assert (X+N).is_Add assert X._blockadd(N).is_Add assert (X+N).shape == X.shape E = MatrixSymbol('E', m, 1) F = MatrixSymbol('F', k, 1) Y = BlockMatrix(Matrix([[E], [F]])) assert (X*Y).shape == (l+n, 1) assert block_collapse(X*Y)[0,0] == A*E + B*F assert block_collapse(X*Y)[1,0] == C*E + D*F assert (block_collapse(Transpose(block_collapse(Transpose(X*Y)))) == block_collapse(X*Y)) # block_collapse passes down into container objects, transposes, and inverse assert block_collapse((X*Y, 2*X)) == (block_collapse(X*Y), block_collapse(2*X)) assert block_collapse(Tuple(X*Y, 2*X)) == ( block_collapse(X*Y), block_collapse(2*X)) assert (block_collapse(Transpose(X*Y)) == block_collapse(Transpose(block_collapse(X*Y)))) Ab = BlockMatrix([[A]]) Z = MatrixSymbol('Z', *A.shape) # Make sure that MatrixSymbols will enter 1x1 BlockMatrix if it simplifies assert block_collapse(Ab+Z) == BlockMatrix([[A+Z]])
def test_BlockMatrix(): n, m, l, k, p = symbols('n m l k p', integer=True) A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', n, k) C = MatrixSymbol('C', l, m) D = MatrixSymbol('D', l, k) M = MatrixSymbol('M', m + k, p) N = MatrixSymbol('N', l + n, k + m) X = BlockMatrix(Matrix([[A, B], [C, D]])) # block_collapse does nothing on normal inputs E = MatrixSymbol('E', n, m) assert block_collapse(A + 2 * E) == A + 2 * E F = MatrixSymbol('F', m, m) assert block_collapse(E.T * A * F) == E.T * A * F assert X.shape == (l + n, k + m) assert (block_collapse(Transpose(X)) == BlockMatrix( Matrix([[A.T, C.T], [B.T, D.T]]))) assert Transpose(X).shape == X.shape[::-1] assert X.blockshape == (2, 2) # Test that BlockMatrices and MatrixSymbols can still mix assert (X * M).is_Mul assert X._blockmul(M).is_Mul assert (X * M).shape == (n + l, p) assert (X + N).is_Add assert X._blockadd(N).is_Add assert (X + N).shape == X.shape E = MatrixSymbol('E', m, 1) F = MatrixSymbol('F', k, 1) Y = BlockMatrix(Matrix([[E], [F]])) assert (X * Y).shape == (l + n, 1) assert block_collapse(X * Y).blocks[0, 0] == A * E + B * F assert block_collapse(X * Y).blocks[1, 0] == C * E + D * F assert (block_collapse(Transpose(block_collapse(Transpose( X * Y)))) == block_collapse(X * Y)) # block_collapse passes down into container objects, transposes, and inverse assert block_collapse( (X * Y, 2 * X)) == (block_collapse(X * Y), block_collapse(2 * X)) assert block_collapse(Tuple(X * Y, 2 * X)) == (block_collapse(X * Y), block_collapse(2 * X)) assert (block_collapse(Transpose(X * Y)) == block_collapse( Transpose(block_collapse(X * Y)))) Ab = BlockMatrix([[A]]) Z = MatrixSymbol('Z', *A.shape) # Make sure that MatrixSymbols will enter 1x1 BlockMatrix if it simplifies assert block_collapse(Ab + Z) == BlockMatrix([[A + Z]])