def test_svd_test_case():
    # a test case from Golub and Reinsch
    #  (see wilkinson/reinsch: handbook for auto. comp., vol ii-linear algebra, 134-151(1971).)

    eps = mp.exp(0.8 * mp.log(mp.eps))

    a = [[22, 10,  2,   3,  7],
         [14,  7, 10,   0,  8],
         [-1, 13, -1, -11,  3],
         [-3, -2, 13,  -2,  4],
         [ 9,  8,  1,  -2,  4],
         [ 9,  1, -7,   5, -1],
         [ 2, -6,  6,   5,  1],
         [ 4,  5,  0,  -2,  2]]

    a = mp.matrix(a)
    b = mp.matrix([mp.sqrt(1248), 20, mp.sqrt(384), 0, 0])

    S = mp.svd_r(a, compute_uv = False)
    S -= b
    assert mp.mnorm(S) < eps

    S = mp.svd_c(a, compute_uv = False)
    S -= b
    assert mp.mnorm(S) < eps
示例#2
0
def run_gauss(qtype, a, b):
    eps = 1e-5

    d, e = mp.gauss_quadrature(len(a), qtype)
    d -= mp.matrix(a)
    e -= mp.matrix(b)

    assert mp.mnorm(d) < eps
    assert mp.mnorm(e) < eps
def run_gauss(qtype, a, b):
    eps = 1e-5

    d, e = mp.gauss_quadrature(len(a), qtype)
    d -= mp.matrix(a)
    e -= mp.matrix(b)

    assert mp.mnorm(d) < eps
    assert mp.mnorm(e) < eps
示例#4
0
def test_eighe_fixed_matrix():
    A = mp.matrix([[2, 3], [3, 5]])
    run_eigsy(A)
    run_eighe(A)

    A = mp.matrix([[7, -11], [-11, 13]])
    run_eigsy(A)
    run_eighe(A)

    A = mp.matrix([[2, 11, 7], [11, 3, 13], [7, 13, 5]])
    run_eigsy(A)
    run_eighe(A)

    A = mp.matrix([[2, 0, 7], [0, 3, 1], [7, 1, 5]])
    run_eigsy(A)
    run_eighe(A)

    #

    A = mp.matrix([[2, 3 + 7j], [3 - 7j, 5]])
    run_eighe(A)

    A = mp.matrix([[2, -11j, 0], [+11j, 3, 29j], [0, -29j, 5]])
    run_eighe(A)

    A = mp.matrix([[2, 11 + 17j, 7 + 19j], [11 - 17j, 3, -13 + 23j],
                   [7 - 19j, -13 - 23j, 5]])
    run_eighe(A)
def test_eighe_fixed_matrix():
    A = mp.matrix([[2, 3], [3, 5]])
    run_eigsy(A)
    run_eighe(A)

    A = mp.matrix([[7, -11], [-11, 13]])
    run_eigsy(A)
    run_eighe(A)

    A = mp.matrix([[2, 11, 7], [11, 3, 13], [7, 13, 5]])
    run_eigsy(A)
    run_eighe(A)

    A = mp.matrix([[2, 0, 7], [0, 3, 1], [7, 1, 5]])
    run_eigsy(A)
    run_eighe(A)

    #

    A = mp.matrix([[2, 3+7j], [3-7j, 5]])
    run_eighe(A)

    A = mp.matrix([[2, -11j, 0], [+11j, 3, 29j], [0, -29j, 5]])
    run_eighe(A)

    A = mp.matrix([[2, 11 + 17j, 7 + 19j], [11 - 17j, 3, -13 + 23j], [7 - 19j, -13 - 23j, 5]])
    run_eighe(A)
示例#6
0
def irandmatrix(n, range=10):
    """
    random matrix with integer entries
    """
    A = mp.matrix(n, n)
    for i in xrange(n):
        for j in xrange(n):
            A[i, j] = int((2 * mp.rand() - 1) * range)
    return A
def irandmatrix(n, range = 10):
    """
    random matrix with integer entries
    """
    A = mp.matrix(n, n)
    for i in xrange(n):
        for j in xrange(n):
            A[i,j]=int( (2 * mp.rand() - 1) * range)
    return A
示例#8
0
def test_svd_test_case():
    # a test case from Golub and Reinsch
    #  (see wilkinson/reinsch: handbook for auto. comp., vol ii-linear algebra, 134-151(1971).)

    eps = mp.exp(0.8 * mp.log(mp.eps))

    a = [[22, 10, 2, 3, 7], [14, 7, 10, 0, 8], [-1, 13, -1, -11, 3],
         [-3, -2, 13, -2, 4], [9, 8, 1, -2, 4], [9, 1, -7, 5, -1],
         [2, -6, 6, 5, 1], [4, 5, 0, -2, 2]]

    a = mp.matrix(a)
    b = mp.matrix([mp.sqrt(1248), 20, mp.sqrt(384), 0, 0])

    S = mp.svd_r(a, compute_uv=False)
    S -= b
    assert mp.mnorm(S) < eps

    S = mp.svd_c(a, compute_uv=False)
    S -= b
    assert mp.mnorm(S) < eps
示例#9
0
def test_eig():
    v = 0
    AS = []

    A = mp.matrix([
        [2, 1, 0],  # jordan block of size 3
        [0, 2, 1],
        [0, 0, 2]
    ])
    AS.append(A)
    AS.append(A.transpose())

    A = mp.matrix([
        [2, 0, 0],  # jordan block of size 2
        [0, 2, 1],
        [0, 0, 2]
    ])
    AS.append(A)
    AS.append(A.transpose())

    A = mp.matrix([
        [2, 0, 1],  # jordan block of size 2
        [0, 2, 0],
        [0, 0, 2]
    ])
    AS.append(A)
    AS.append(A.transpose())

    A = mp.matrix([
        [0, 0, 1],  # cyclic
        [1, 0, 0],
        [0, 1, 0]
    ])
    AS.append(A)
    AS.append(A.transpose())

    for A in AS:
        run_hessenberg(A, verbose=v)
        run_schur(A, verbose=v)
        run_eig(A, verbose=v)
示例#10
0
    def _nodal_basis(self, pts, ptsord):
        # Obtain an orthonormal basis
        ob = self._orthonormal_basis(ptsord)

        p, q = self._dims

        # Evaluate each basis function at each point
        V = self._eval_lbasis_at(lambdify_mpf(self._dims, ob), pts)

        # Invert this matrix to obtain the expansion coefficients
        Vinv = mp.matrix(V.T)**-1

        # Each nodal basis function is a linear combination of
        # orthonormal basis functions
        nb = [sum(c*b for c, b in zip(Vinv[i,:], ob))
              for i in xrange(len(pts))]

        return np.array(nb, dtype=np.object)
示例#11
0
文件: mksmat.py 项目: dasmy/sdcquad
    subroutine = '%s_quadrature_' % q
    with open('%s.hpp' % q, 'w') as f:
        f.write('#ifndef %s_HPP\n' % q.upper())
        f.write('#define %s_HPP\n\n' % q.upper())
        f.write('// this file was generated by "mksmat.py"\n')
        f.write('#include<cassert>\n\n')
        f.write('namespace detail{\n\n')
        f.write('    template<int sdcnodes>\n')
        f.write('    inline long double %smatrix(unsigned i, unsigned j);\n\n' % subroutine)
        f.write('    template<int sdcnodes>\n')
        f.write('    inline long double %snode(unsigned i);\n\n' % subroutine)
        f.write('    template<int sdcnodes>\n')
        f.write('    inline long double %sdt(unsigned i);\n\n' % subroutine)

        for n in quads[q]:
            dt = mp.matrix(1, n-1)
            for r in quads[q][n]:
                f.write('    template<>\n')
                f.writelines(['    inline long double %smatrix<%d>(unsigned i, unsigned j)\n    {\n' % (subroutine, n),
                '        static long double integration_matrix[%d][%d] = \n        {\n' % (n-1, n)
                            ])
                (nodes, smat) = quads[q][n][r]
                rows, cols = smat.shape
                for row in range(rows):
                    dt[row] = sum(smat[row])
                    f.write('            {')
                    for col in range(cols-1):
                        f.write('%sL,' % str(smat[row][col]))
                    f.write('%sL}' % str(smat[row][cols-1]))
                    if row == rows-1:
                        f.write('\n        };\n')