示例#1
0
    def _process_vector_differential(vectdiff, condition, \
                                     variable, ordinate, frame):
        """
        Helper function for get_motion methods. Finds derivative of vectdiff wrt
        variable, and its integral using the specified boundary condition at
        value of variable = ordinate.
        Returns a tuple of - (derivative, function and integral) wrt vectdiff

        """

        #Make sure boundary condition is independent of 'variable'
        if condition != 0:
            condition = frame.express(condition)
        #Special case of vectdiff == 0
        if vectdiff == Vector(0):
            return (0, 0, condition)
        #Express vectdiff completely in condition's frame to give vectdiff1
        vectdiff1 = frame.express(vectdiff)
        #Find derivative of vectdiff
        vectdiff2 = frame.dt(vectdiff)
        #Integrate and use boundary condition
        vectdiff0 = Vector(0)
        lims = (variable, ordinate, variable)
        for dim in frame:
            function1 = vectdiff1.dot(dim)
            abscissa = dim.dot(condition).subs({variable: ordinate})
            # Indefinite integral of 'function1' wrt 'variable', using
            # the given initial condition (ordinate, abscissa).
            vectdiff0 += (integrate(function1, lims) + abscissa) * dim
        #Return tuple
        return (vectdiff2, vectdiff, vectdiff0)
示例#2
0
    def set_vel(self, frame, value):
        """Sets the velocity Vector of this Point in a ReferenceFrame.

        Parameters
        ==========

        value : Vector
            The vector value of this point's velocity in the frame
        frame : ReferenceFrame
            The frame in which this point's velocity is defined

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_vel(N, 10 * N.x)
        >>> p1.vel(N)
        10*N.x

        """

        if value == 0:
            value = Vector(0)
        value = _check_vector(value)
        _check_frame(frame)
        self._vel_dict.update({frame: value})
示例#3
0
    def set_pos(self, otherpoint, value):
        """Used to set the position of this point w.r.t. another point.

        Parameters
        ==========

        value : Vector
            The vector which defines the location of this point
        point : Point
            The other point which this point's location is defined relative to

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p2 = Point('p2')
        >>> p1.set_pos(p2, 10 * N.x)
        >>> p1.pos_from(p2)
        10*N.x

        """

        if value == 0:
            value = Vector(0)
        value = _check_vector(value)
        self._check_point(otherpoint)
        self._pos_dict.update({otherpoint: value})
        otherpoint._pos_dict.update({self: -value})
示例#4
0
    def set_acc(self, frame, value):
        """Used to set the acceleration of this Point in a ReferenceFrame.

        Parameters
        ==========

        value : Vector
            The vector value of this point's acceleration in the frame
        frame : ReferenceFrame
            The frame in which this point's acceleration is defined

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_acc(N, 10 * N.x)
        >>> p1.acc(N)
        10*N.x

        """

        if value == 0:
            value = Vector(0)
        value = _check_vector(value)
        _check_frame(frame)
        self._acc_dict.update({frame: value})
示例#5
0
    def pos_from(self, otherpoint):
        """Returns a Vector distance between this Point and the other Point.

        Parameters
        ==========

        otherpoint : Point
            The otherpoint we are locating this one relative to

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p2 = Point('p2')
        >>> p1.set_pos(p2, 10 * N.x)
        >>> p1.pos_from(p2)
        10*N.x

        """

        outvec = Vector(0)
        plist = self._pdict_list(otherpoint, 0)
        for i in range(len(plist) - 1):
            outvec += plist[i]._pos_dict[plist[i + 1]]
        return outvec
示例#6
0
    def locatenew(self, name, value):
        """Creates a new point with a position defined from this point.

        Parameters
        ==========

        name : str
            The name for the new point
        value : Vector
            The position of the new point relative to this point

        Examples
        ========

        >>> from sympy.physics.mechanics import ReferenceFrame, Point
        >>> N = ReferenceFrame('N')
        >>> P1 = Point('P1')
        >>> P2 = P1.locatenew('P2', 10 * N.x)

        """

        if not isinstance(name, str):
            raise TypeError('Must supply a valid name')
        if value == 0:
            value = Vector(0)
        value = _check_vector(value)
        p = Point(name)
        p.set_pos(self, value)
        self.set_pos(p, -value)
        return p
示例#7
0
    def acc(self, frame):
        """The acceleration Vector of this Point in a ReferenceFrame.

        Parameters
        ==========

        frame : ReferenceFrame
            The frame in which the returned acceleration vector will be defined in

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_acc(N, 10 * N.x)
        >>> p1.acc(N)
        10*N.x

        """

        _check_frame(frame)
        if not (frame in self._acc_dict):
            if self._vel_dict[frame] != 0:
                return (self._vel_dict[frame]).dt(frame)
            else:
                return Vector(0)
        return self._acc_dict[frame]
示例#8
0
def angular_momentum(point, frame, *body):
    """Angular momentum of a system

    This function returns the angular momentum of a system of Particle's and/or
    RigidBody's. The angular momentum of such a system is equal to the vector
    sum of the angular momentum of its constituents. Consider a system, S,
    comprised of a rigid body, A, and a particle, P. The angular momentum of
    the system, H, is equal to the vector sum of the linear momentum of the
    particle, H1, and the linear momentum of the rigid body, H2, i.e-

    H = H1 + H2

    Parameters
    ==========

    point : Point
        The point about which angular momentum of the system is desired.
    frame : ReferenceFrame
        The frame in which angular momentum is desired.
    body1, body2, body3... : Particle and/or RigidBody
        The body (or bodies) whose kinetic energy is required.

    Examples
    ========

    >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
    >>> from sympy.physics.mechanics import RigidBody, outer, angular_momentum
    >>> N = ReferenceFrame('N')
    >>> O = Point('O')
    >>> O.set_vel(N, 0 * N.x)
    >>> P = O.locatenew('P', 1 * N.x)
    >>> P.set_vel(N, 10 * N.x)
    >>> Pa = Particle('Pa', P, 1)
    >>> Ac = O.locatenew('Ac', 2 * N.y)
    >>> Ac.set_vel(N, 5 * N.y)
    >>> a = ReferenceFrame('a')
    >>> a.set_ang_vel(N, 10 * N.z)
    >>> I = outer(N.z, N.z)
    >>> A = RigidBody('A', Ac, a, 20, (I, Ac))
    >>> angular_momentum(O, N, Pa, A)
    10*N.z

    """

    if not isinstance(frame, ReferenceFrame):
        raise TypeError('Please enter a valid ReferenceFrame')
    if not isinstance(point, Point):
        raise TypeError('Please specify a valid Point')
    else:
        angular_momentum_sys = Vector(0)
        for e in body:
            if isinstance(e, (RigidBody, Particle)):
                angular_momentum_sys += e.angular_momentum(point, frame)
            else:
                raise TypeError('*body must have only Particle or RigidBody')
    return angular_momentum_sys
示例#9
0
def linear_momentum(frame, *body):
    """Linear momentum of the system.

    This function returns the linear momentum of a system of Particle's and/or
    RigidBody's. The linear momentum of a system is equal to the vector sum of
    the linear momentum of its constituents. Consider a system, S, comprised of
    a rigid body, A, and a particle, P. The linear momentum of the system, L,
    is equal to the vector sum of the linear momentum of the particle, L1, and
    the linear momentum of the rigid body, L2, i.e-

    L = L1 + L2

    Parameters
    ==========

    frame : ReferenceFrame
        The frame in which linear momentum is desired.
    body1, body2, body3... : Particle and/or RigidBody
        The body (or bodies) whose kinetic energy is required.

    Examples
    ========

    >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
    >>> from sympy.physics.mechanics import RigidBody, outer, linear_momentum
    >>> N = ReferenceFrame('N')
    >>> P = Point('P')
    >>> P.set_vel(N, 10 * N.x)
    >>> Pa = Particle('Pa', P, 1)
    >>> Ac = Point('Ac')
    >>> Ac.set_vel(N, 25 * N.y)
    >>> I = outer(N.x, N.x)
    >>> A = RigidBody('A', Ac, N, 20, (I, Ac))
    >>> linear_momentum(N, A, Pa)
    10*N.x + 500*N.y

    """

    if not isinstance(frame, ReferenceFrame):
        raise TypeError('Please specify a valid ReferenceFrame')
    else:
        linear_momentum_sys = Vector(0)
        for e in body:
            if isinstance(e, (RigidBody, Particle)):
                linear_momentum_sys += e.linear_momentum(frame)
            else:
                raise TypeError('*body must have only Particle or RigidBody')
    return linear_momentum_sys
示例#10
0
def get_motion_params(frame, **kwargs):
    """
    Returns the three motion parameters - (acceleration, velocity, and
    position) as vectorial functions of time in the given frame.

    If a higher order differential function is provided, the lower order
    functions are used as boundary conditions. For example, given the
    acceleration, the velocity and position parameters are taken as
    boundary conditions.

    The values of time at which the boundary conditions are specified
    are taken from timevalue1(for position boundary condition) and
    timevalue2(for velocity boundary condition).

    If any of the boundary conditions are not provided, they are taken
    to be zero by default (zero vectors, in case of vectorial inputs). If
    the boundary conditions are also functions of time, they are converted
    to constants by substituting the time values in the dynamicsymbols._t
    time Symbol.

    This function can also be used for calculating rotational motion
    parameters. Have a look at the Parameters and Examples for more clarity.

    Parameters
    ==========

    frame : ReferenceFrame
        The frame to express the motion parameters in

    acceleration : Vector
        Acceleration of the object/frame as a function of time

    velocity : Vector
        Velocity as function of time or as boundary condition
        of velocity at time = timevalue1

    position : Vector
        Velocity as function of time or as boundary condition
        of velocity at time = timevalue1

    timevalue1 : sympyfiable
        Value of time for position boundary condition

    timevalue2 : sympyfiable
        Value of time for velocity boundary condition

    Examples
    ========

    >>> from sympy.physics.mechanics import ReferenceFrame, get_motion_params, dynamicsymbols
    >>> from sympy import symbols
    >>> R = ReferenceFrame('R')
    >>> v1, v2, v3 = dynamicsymbols('v1 v2 v3')
    >>> v = v1*R.x + v2*R.y + v3*R.z
    >>> get_motion_params(R, position = v)
    (v1''*R.x + v2''*R.y + v3''*R.z, v1'*R.x + v2'*R.y + v3'*R.z, v1*R.x + v2*R.y + v3*R.z)
    >>> a, b, c = symbols('a b c')
    >>> v = a*R.x + b*R.y + c*R.z
    >>> get_motion_params(R, velocity = v)
    (0, a*R.x + b*R.y + c*R.z, a*t*R.x + b*t*R.y + c*t*R.z)
    >>> parameters = get_motion_params(R, acceleration = v)
    >>> parameters[1]
    a*t*R.x + b*t*R.y + c*t*R.z
    >>> parameters[2]
    a*t**2/2*R.x + b*t**2/2*R.y + c*t**2/2*R.z

    """

    ##Helper functions

    def _process_vector_differential(vectdiff, condition, \
                                     variable, ordinate, frame):
        """
        Helper function for get_motion methods. Finds derivative of vectdiff wrt
        variable, and its integral using the specified boundary condition at
        value of variable = ordinate.
        Returns a tuple of - (derivative, function and integral) wrt vectdiff

        """

        #Make sure boundary condition is independent of 'variable'
        if condition != 0:
            condition = frame.express(condition)
        #Special case of vectdiff == 0
        if vectdiff == Vector(0):
            return (0, 0, condition)
        #Express vectdiff completely in condition's frame to give vectdiff1
        vectdiff1 = frame.express(vectdiff)
        #Find derivative of vectdiff
        vectdiff2 = frame.dt(vectdiff)
        #Integrate and use boundary condition
        vectdiff0 = Vector(0)
        lims = (variable, ordinate, variable)
        for dim in frame:
            function1 = vectdiff1.dot(dim)
            abscissa = dim.dot(condition).subs({variable: ordinate})
            # Indefinite integral of 'function1' wrt 'variable', using
            # the given initial condition (ordinate, abscissa).
            vectdiff0 += (integrate(function1, lims) + abscissa) * dim
        #Return tuple
        return (vectdiff2, vectdiff, vectdiff0)

    ##Function body

    _check_frame(frame)
    #Decide mode of operation based on user's input
    if 'acceleration' in kwargs:
        mode = 2
    elif 'velocity' in kwargs:
        mode = 1
    else:
        mode = 0
    #All the possible parameters in kwargs
    #Not all are required for every case
    #If not specified, set to default values(may or may not be used in
    #calculations)
    conditions = [
        'acceleration', 'velocity', 'position', 'timevalue', 'timevalue1',
        'timevalue2'
    ]
    for i, x in enumerate(conditions):
        if x not in kwargs:
            if i < 3:
                kwargs[x] = Vector(0)
            else:
                kwargs[x] = S(0)
        elif i < 3:
            _check_vector(kwargs[x])
        else:
            kwargs[x] = sympify(kwargs[x])
    if mode == 2:
        vel = _process_vector_differential(kwargs['acceleration'],
                                           kwargs['velocity'],
                                           dynamicsymbols._t,
                                           kwargs['timevalue2'], frame)[2]
        pos = _process_vector_differential(vel, kwargs['position'],
                                           dynamicsymbols._t,
                                           kwargs['timevalue1'], frame)[2]
        return (kwargs['acceleration'], vel, pos)
    elif mode == 1:
        return _process_vector_differential(kwargs['velocity'],
                                            kwargs['position'],
                                            dynamicsymbols._t,
                                            kwargs['timevalue1'], frame)
    else:
        vel = frame.dt(kwargs['position'])
        acc = frame.dt(vel)
        return (acc, vel, kwargs['position'])
示例#11
0
def express(expr, frame, frame2=None, variables=False):
    """
    Global function for 'express' functionality.

    Re-expresses a Vector, scalar(sympyfiable) or Dyadic in given frame.

    Refer to the local methods of Vector and Dyadic for details.
    If 'variables' is True, then the coordinate variables (CoordinateSym
    instances) of other frames present in the vector/scalar field or
    dyadic expression are also substituted in terms of the base scalars of
    this frame.

    Parameters
    ==========

    expr : Vector/Dyadic/scalar(sympyfiable)
        The expression to re-express in ReferenceFrame 'frame'

    frame: ReferenceFrame
        The reference frame to express expr in

    frame2 : ReferenceFrame
        The other frame required for re-expression(only for Dyadic expr)

    variables : boolean
        Specifies whether to substitute the coordinate variables present
        in expr, in terms of those of frame

    Examples
    ========

    >>> from sympy.physics.mechanics import ReferenceFrame, outer, dynamicsymbols
    >>> N = ReferenceFrame('N')
    >>> q = dynamicsymbols('q')
    >>> B = N.orientnew('B', 'Axis', [q, N.z])
    >>> d = outer(N.x, N.x)
    >>> from sympy.physics.mechanics import express
    >>> express(d, B, N)
    cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x)
    >>> express(B.x, N)
    cos(q)*N.x + sin(q)*N.y
    >>> express(N[0], B, variables=True)
    B_x*cos(q(t)) - B_y*sin(q(t))

    """

    _check_frame(frame)

    if expr == 0:
        return S(0)

    if isinstance(expr, Vector):
        #Given expr is a Vector
        if variables:
            #If variables attribute is True, substitute
            #the coordinate variables in the Vector
            frame_list = [x[-1] for x in expr.args]
            subs_dict = {}
            for f in frame_list:
                subs_dict.update(f.variable_map(frame))
            expr = expr.subs(subs_dict)
        #Re-express in this frame
        outvec = Vector([])
        for i, v in enumerate(expr.args):
            if v[1] != frame:
                temp = frame.dcm(v[1]) * v[0]
                if Vector.simp:
                    temp = temp.applyfunc(lambda x: \
                                          trigsimp(x, method='fu'))
                outvec += Vector([(temp, frame)])
            else:
                outvec += Vector([v])
        return outvec

    if isinstance(expr, Dyadic):
        if frame2 is None:
            frame2 = frame
        _check_frame(frame2)
        ol = Dyadic(0)
        for i, v in enumerate(expr.args):
            ol += express(v[0], frame, variables=variables) * \
                  (express(v[1], frame, variables=variables) | \
                   express(v[2], frame2, variables=variables))
        return ol

    else:
        if variables:
            #Given expr is a scalar field
            frame_set = set([])
            expr = sympify(expr)
            #Subsitute all the coordinate variables
            for x in expr.atoms():
                if isinstance(x, CoordinateSym) and x.frame != frame:
                    frame_set.add(x.frame)
            subs_dict = {}
            for f in frame_set:
                subs_dict.update(f.variable_map(frame))
            return expr.subs(subs_dict)
        return expr
示例#12
0
def time_derivative(expr, frame, order=1):
    """
    Calculate the time derivative of a vector/scalar field function
    or dyadic expression in given frame.

    References
    ==========

    http://en.wikipedia.org/wiki/Rotating_reference_frame#Time_derivatives_in_the_two_frames

    Parameters
    ==========

    expr : Vector/Dyadic/sympifyable
        The expression whose time derivative is to be calculated

    frame : ReferenceFrame
        The reference frame to calculate the time derivative in

    order : integer
        The order of the derivative to be calculated

    Examples
    ========

    >>> from sympy.physics.mechanics import ReferenceFrame, Vector, dynamicsymbols
    >>> from sympy import Symbol
    >>> q1 = Symbol('q1')
    >>> u1 = dynamicsymbols('u1')
    >>> N = ReferenceFrame('N')
    >>> A = N.orientnew('A', 'Axis', [q1, N.x])
    >>> v = u1 * N.x
    >>> A.set_ang_vel(N, 10*A.x)
    >>> from sympy.physics.mechanics import time_derivative
    >>> time_derivative(v, N)
    u1'*N.x
    >>> time_derivative(u1*A[0], N)
    N_x*Derivative(u1(t), t)
    >>> B = N.orientnew('B', 'Axis', [u1, N.z])
    >>> from sympy.physics.mechanics import outer
    >>> d = outer(N.x, N.x)
    >>> time_derivative(d, B)
    - u1'*(N.y|N.x) - u1'*(N.x|N.y)

    """

    t = dynamicsymbols._t
    _check_frame(frame)

    if order == 0:
        return expr
    if order % 1 != 0 or order < 0:
        raise ValueError("Unsupported value of order entered")

    if isinstance(expr, Vector):
        outvec = Vector(0)
        for i, v in enumerate(expr.args):
            if v[1] == frame:
                outvec += Vector([(express(v[0], frame, \
                                           variables=True).diff(t), frame)])
            else:
                outvec += time_derivative(Vector([v]), v[1]) + \
                          (v[1].ang_vel_in(frame) ^ Vector([v]))
        return time_derivative(outvec, frame, order - 1)

    if isinstance(expr, Dyadic):
        ol = Dyadic(0)
        for i, v in enumerate(expr.args):
            ol += (v[0].diff(t) * (v[1] | v[2]))
            ol += (v[0] * (time_derivative(v[1], frame) | v[2]))
            ol += (v[0] * (v[1] | time_derivative(v[2], frame)))
        return time_derivative(ol, frame, order - 1)

    else:
        return diff(express(expr, frame, variables=True), t, order)