示例#1
0
def dup_gff_list(f, K):
    """
    Compute greatest factorial factorization of ``f`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_gff_list(x**5 + 2*x**4 - x**3 - 2*x**2)
    [(x, 1), (x + 2, 4)]

    """
    if not f:
        raise ValueError("greatest factorial factorization doesn't exist for a zero polynomial")

    f = dup_monic(f, K)

    if not dup_degree(f):
        return []
    else:
        g = dup_gcd(f, dup_shift(f, K.one, K), K)
        H = dup_gff_list(g, K)

        for i, (h, k) in enumerate(H):
            g = dup_mul(g, dup_shift(h, -K(k), K), K)
            H[i] = (h, k + 1)

        f = dup_quo(f, g, K)

        if not dup_degree(f):
            return H
        else:
            return [(f, 1)] + H
示例#2
0
def dup_gff_list(f, K):
    """
    Compute greatest factorial factorization of ``f`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_gff_list(x**5 + 2*x**4 - x**3 - 2*x**2)
    [(x, 1), (x + 2, 4)]

    """
    if not f:
        raise ValueError("greatest factorial factorization doesn't exist for a zero polynomial")

    f = dup_monic(f, K)

    if not dup_degree(f):
        return []
    else:
        g = dup_gcd(f, dup_shift(f, K.one, K), K)
        H = dup_gff_list(g, K)

        for i, (h, k) in enumerate(H):
            g = dup_mul(g, dup_shift(h, -K(k), K), K)
            H[i] = (h, k + 1)

        f = dup_quo(f, g, K)

        if not dup_degree(f):
            return H
        else:
            return [(f, 1)] + H
示例#3
0
def dup_ext_factor(f, K):
    """Factor univariate polynomials over algebraic number fields. """
    n, lc = dup_degree(f), dup_LC(f, K)

    f = dup_monic(f, K)

    if n <= 0:
        return lc, []
    if n == 1:
        return lc, [(f, 1)]

    f, F = dup_sqf_part(f, K), f
    s, g, r = dup_sqf_norm(f, K)

    factors = dup_factor_list_include(r, K.dom)

    if len(factors) == 1:
        return lc, [(f, n // dup_degree(f))]

    H = s * K.unit

    for i, (factor, _) in enumerate(factors):
        h = dup_convert(factor, K.dom, K)
        h, _, g = dup_inner_gcd(h, g, K)
        h = dup_shift(h, H, K)
        factors[i] = h

    factors = dup_trial_division(F, factors, K)

    return lc, factors
示例#4
0
def dup_ext_factor(f, K):
    """Factor univariate polynomials over algebraic number fields. """
    n, lc = dup_degree(f), dup_LC(f, K)

    f = dup_monic(f, K)

    if n <= 0:
        return lc, []
    if n == 1:
        return lc, [(f, 1)]

    f, F = dup_sqf_part(f, K), f
    s, g, r = dup_sqf_norm(f, K)

    factors = dup_factor_list_include(r, K.dom)

    if len(factors) == 1:
        return lc, [(f, n//dup_degree(f))]

    H = s*K.unit

    for i, (factor, _) in enumerate(factors):
        h = dup_convert(factor, K.dom, K)
        h, _, g = dup_inner_gcd(h, g, K)
        h = dup_shift(h, H, K)
        factors[i] = h

    factors = dup_trial_division(F, factors, K)

    return lc, factors
示例#5
0
def dup_gff_list(f, K):
    """
    Compute greatest factorial factorization of ``f`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.sqfreetools import dup_gff_list

    >>> f = ZZ.map([1, 2, -1, -2, 0, 0])

    >>> dup_gff_list(f, ZZ)
    [([1, 0], 1), ([1, 2], 4)]

    """
    if not f:
        raise ValueError(
            "greatest factorial factorization doesn't exist for a zero polynomial"
        )

    f = dup_monic(f, K)

    if not dup_degree(f):
        return []
    else:
        g = dup_gcd(f, dup_shift(f, K.one, K), K)
        H = dup_gff_list(g, K)

        for i, (h, k) in enumerate(H):
            g = dup_mul(g, dup_shift(h, -K(k), K), K)
            H[i] = (h, k + 1)

        f = dup_quo(f, g, K)

        if not dup_degree(f):
            return H
        else:
            return [(f, 1)] + H
示例#6
0
def dup_gff_list(f, K):
    """
    Compute greatest factorial factorization of ``f`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.sqfreetools import dup_gff_list

    >>> f = ZZ.map([1, 2, -1, -2, 0, 0])

    >>> dup_gff_list(f, ZZ)
    [([1, 0], 1), ([1, 2], 4)]

    """
    if not f:
        raise ValueError("greatest factorial factorization doesn't exist for a zero polynomial")

    f = dup_monic(f, K)

    if not dup_degree(f):
        return []
    else:
        g = dup_gcd(f, dup_shift(f, K.one, K), K)
        H = dup_gff_list(g, K)

        for i, (h, k) in enumerate(H):
            g = dup_mul(g, dup_shift(h, -K(k), K), K)
            H[i] = (h, k + 1)

        f = dup_quo(f, g, K)

        if not dup_degree(f):
            return H
        else:
            return [(f, 1)] + H
示例#7
0
def dup_sqf_norm(f, K):
    """
    Square-free norm of ``f`` in ``K[x]``, useful over algebraic domains.

    Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
    is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> from sympy import sqrt

    >>> K = QQ.algebraic_field(sqrt(3))
    >>> R, x = ring("x", K)
    >>> _, X = ring("x", QQ)

    >>> s, f, r = R.dup_sqf_norm(x**2 - 2)

    >>> s == 1
    True
    >>> f == x**2 + K([QQ(-2), QQ(0)])*x + 1
    True
    >>> r == X**4 - 10*X**2 + 1
    True

    """
    if not K.is_Algebraic:
        raise DomainError("ground domain must be algebraic")

    s, g = 0, dmp_raise(K.mod.rep, 1, 0, K.dom)

    while True:
        h, _ = dmp_inject(f, 0, K, front=True)
        r = dmp_resultant(g, h, 1, K.dom)

        if dup_sqf_p(r, K.dom):
            break
        else:
            f, s = dup_shift(f, -K.unit, K), s + 1

    return s, f, r
def dup_sqf_norm(f, K):
    """
    Square-free norm of ``f`` in ``K[x]``, useful over algebraic domains.

    Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
    is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> from sympy import sqrt

    >>> K = QQ.algebraic_field(sqrt(3))
    >>> R, x = ring("x", K)
    >>> _, X = ring("x", QQ)

    >>> s, f, r = R.dup_sqf_norm(x**2 - 2)

    >>> s == 1
    True
    >>> f == x**2 + K([QQ(-2), QQ(0)])*x + 1
    True
    >>> r == X**4 - 10*X**2 + 1
    True

    """
    if not K.is_Algebraic:
        raise DomainError("ground domain must be algebraic")

    s, g = 0, dmp_raise(K.mod.rep, 1, 0, K.dom)

    while True:
        h, _ = dmp_inject(f, 0, K, front=True)
        r = dmp_resultant(g, h, 1, K.dom)

        if dup_sqf_p(r, K.dom):
            break
        else:
            f, s = dup_shift(f, -K.unit, K), s + 1

    return s, f, r
示例#9
0
def dup_sqf_norm(f, K):
    """
    Square-free norm of ``f`` in ``K[x]``, useful over algebraic domains.

    Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
    is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.

    **Examples**

    >>> from sympy import sqrt
    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.sqfreetools import dup_sqf_norm

    >>> K = QQ.algebraic_field(sqrt(3))

    >>> s, f, r = dup_sqf_norm([K(1), K(0), K(-2)], K)

    >>> s == 1
    True
    >>> f == [K(1), K([QQ(-2), QQ(0)]), K(1)]
    True
    >>> r == [1, 0, -10, 0, 1]
    True

    """
    if not K.is_Algebraic:
        raise DomainError("ground domain must be algebraic")

    s, g = 0, dmp_raise(K.mod.rep, 1, 0, K.dom)

    while True:
        h, _ = dmp_inject(f, 0, K, front=True)
        r = dmp_resultant(g, h, 1, K.dom)

        if dup_sqf_p(r, K.dom):
            break
        else:
            f, s = dup_shift(f, -K.unit, K), s+1

    return s, f, r
示例#10
0
def test_dup_shift():
    assert dup_shift([], 1, ZZ) == []
    assert dup_shift([1], 1, ZZ) == [1]

    assert dup_shift([1, 2, 3, 4, 5], 1, ZZ) == [1, 6, 15, 20, 15]
    assert dup_shift([1, 2, 3, 4, 5], 7, ZZ) == [1, 30, 339, 1712, 3267]
示例#11
0
文件: polyclasses.py 项目: fxkr/sympy
 def shift(f, a):
     """Efficiently compute Taylor shift ``f(x + a)``. """
     if not f.lev:
         return f.per(dup_shift(f.rep, f.dom.convert(a), f.dom))
     else:
         raise ValueError('univariate polynomial expected')
示例#12
0
def test_dup_shift():
    assert dup_shift([], 1, ZZ) == []
    assert dup_shift([1], 1, ZZ) == [1]

    assert dup_shift([1, 2, 3, 4, 5], 1, ZZ) == [1, 6, 15, 20, 15]
    assert dup_shift([1, 2, 3, 4, 5], 7, ZZ) == [1, 30, 339, 1712, 3267]
示例#13
0
 def shift(f, a):
     """Efficiently compute Taylor shift ``f(x + a)``. """
     if not f.lev:
         return f.per(dup_shift(f.rep, f.dom.convert(a), f.dom))
     else:
         raise ValueError('univariate polynomial expected')