def test_to_Sequence(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') n = symbols('n', integer=True) _, Sn = RecurrenceOperators(ZZ.old_poly_ring(n), 'Sn') p = HolonomicFunction(x**2 * Dx**4 + x + Dx, x).to_sequence() q = [(HolonomicSequence(1 + (n + 2) * Sn**2 + (n**4 + 6 * n**3 + 11 * n**2 + 6 * n) * Sn**3), 0, 1)] assert p == q p = HolonomicFunction(x**2 * Dx**4 + x**3 + Dx**2, x).to_sequence() q = [ (HolonomicSequence(1 + (n**4 + 14 * n**3 + 72 * n**2 + 163 * n + 140) * Sn**5), 0, 0) ] assert p == q p = HolonomicFunction(x**3 * Dx**4 + 1 + Dx**2, x).to_sequence() q = [(HolonomicSequence(1 + (n**4 - 2 * n**3 - n**2 + 2 * n) * Sn + (n**2 + 3 * n + 2) * Sn**2), 0, 0)] assert p == q p = HolonomicFunction(3 * x**3 * Dx**4 + 2 * x * Dx + x * Dx**3, x).to_sequence() q = [(HolonomicSequence(2 * n + (3 * n**4 - 6 * n**3 - 3 * n**2 + 6 * n) * Sn + (n**3 + 3 * n**2 + 2 * n) * Sn**2), 0, 1)] assert p == q
def hermite_normal_form(A, *, D=None, check_rank=False): r""" Compute the Hermite Normal Form of a Matrix *A* of integers. Examples ======== >>> from sympy import Matrix >>> from sympy.matrices.normalforms import hermite_normal_form >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]]) >>> print(hermite_normal_form(m)) Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]]) Parameters ========== A : $m \times n$ ``Matrix`` of integers. D : int, optional Let $W$ be the HNF of *A*. If known in advance, a positive integer *D* being any multiple of $\det(W)$ may be provided. In this case, if *A* also has rank $m$, then we may use an alternative algorithm that works mod *D* in order to prevent coefficient explosion. check_rank : boolean, optional (default=False) The basic assumption is that, if you pass a value for *D*, then you already believe that *A* has rank $m$, so we do not waste time checking it for you. If you do want this to be checked (and the ordinary, non-modulo *D* algorithm to be used if the check fails), then set *check_rank* to ``True``. Returns ======= ``Matrix`` The HNF of matrix *A*. Raises ====== DMDomainError If the domain of the matrix is not :ref:`ZZ`. DMShapeError If the mod *D* algorithm is used but the matrix has more rows than columns. References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* (See Algorithms 2.4.5 and 2.4.8.) """ # Accept any of Python int, SymPy Integer, and ZZ itself: if D is not None and not ZZ.of_type(D): D = ZZ(int(D)) return _hnf(A._rep, D=D, check_rank=check_rank).to_Matrix()
def test_QuotientRing(): I = QQ.old_poly_ring(x).ideal(x**2 + 1) R = QQ.old_poly_ring(x) / I assert R == QQ.old_poly_ring(x) / [x**2 + 1] assert R == QQ.old_poly_ring(x) / QQ.old_poly_ring(x).ideal(x**2 + 1) assert R != QQ.old_poly_ring(x) assert R.convert(1) / x == -x + I assert -1 + I == x**2 + I assert R.convert(ZZ(1), ZZ) == 1 + I assert R.convert(R.convert(x), R) == R.convert(x) X = R.convert(x) Y = QQ.old_poly_ring(x).convert(x) assert -1 + I == X**2 + I assert -1 + I == Y**2 + I assert R.to_sympy(X) == x raises(ValueError, lambda: QQ.old_poly_ring(x) / QQ.old_poly_ring(x, y).ideal(x)) R = QQ.old_poly_ring(x, order="ilex") I = R.ideal(x) assert R.convert(1) + I == (R / I).convert(1)
def denom(self, a): """Get the denominator of ``a``.""" ZZ = self.dom.get_ring() QQ = self.dom ZZ_I = self.get_ring() denom_ZZ = ZZ.lcm(QQ.denom(a.x), QQ.denom(a.y)) return ZZ_I(denom_ZZ, ZZ.zero)
def test_to_expr(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx - 1, x, 0, [1]).to_expr() q = exp(x) assert p == q p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).to_expr() q = cos(x) assert p == q p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0]).to_expr() q = cosh(x) assert p == q p = HolonomicFunction(2 + (4*x - 1)*Dx + \ (x**2 - x)*Dx**2, x, 0, [1, 2]).to_expr().expand() q = 1 / (x**2 - 2 * x + 1) assert p == q p = expr_to_holonomic(sin(x)**2 / x).integrate((x, 0, x)).to_expr() q = (sin(x)**2 / x).integrate((x, 0, x)) assert p == q C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3') p = expr_to_holonomic(log(1 + x**2)).to_expr() q = C_2 * log(x**2 + 1) assert p == q p = expr_to_holonomic(log(1 + x**2)).diff().to_expr() q = C_0 * x / (x**2 + 1) assert p == q p = expr_to_holonomic(erf(x) + x).to_expr() q = 3 * C_3 * x - 3 * sqrt(pi) * C_3 * erf(x) / 2 + x + 2 * x / sqrt(pi) assert p == q p = expr_to_holonomic(sqrt(x), x0=1).to_expr() assert p == sqrt(x) assert expr_to_holonomic(sqrt(x)).to_expr() == sqrt(x) p = expr_to_holonomic(sqrt(1 + x**2)).to_expr() assert p == sqrt(1 + x**2) p = expr_to_holonomic((2 * x**2 + 1)**Rational(2, 3)).to_expr() assert p == (2 * x**2 + 1)**Rational(2, 3) p = expr_to_holonomic(sqrt(-x**2 + 2 * x)).to_expr() assert p == sqrt(x) * sqrt(-x + 2) p = expr_to_holonomic((-2 * x**3 + 7 * x)**Rational(2, 3)).to_expr() q = x**Rational(2, 3) * (-2 * x**2 + 7)**Rational(2, 3) assert p == q p = from_hyper(hyper((-2, -3), (S.Half, ), x)) s = hyperexpand(hyper((-2, -3), (S.Half, ), x)) D_0 = Symbol('D_0') C_0 = Symbol('C_0') assert (p.to_expr().subs({C_0: 1, D_0: 0}) - s).simplify() == 0 p.y0 = {0: [1], S.Half: [0]} assert p.to_expr() == s assert expr_to_holonomic(x**5).to_expr() == x**5 assert expr_to_holonomic(2*x**3-3*x**2).to_expr().expand() == \ 2*x**3-3*x**2 a = symbols("a") p = (expr_to_holonomic(1.4 * x) * expr_to_holonomic(a * x, x)).to_expr() q = 1.4 * a * x**2 assert p == q p = (expr_to_holonomic(1.4 * x) + expr_to_holonomic(a * x, x)).to_expr() q = x * (a + 1.4) assert p == q p = (expr_to_holonomic(1.4 * x) + expr_to_holonomic(x)).to_expr() assert p == 2.4 * x
def test_HolonomicFunction_addition(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx**2 * x, x) q = HolonomicFunction((2) * Dx + (x) * Dx**2, x) assert p == q p = HolonomicFunction(x * Dx + 1, x) q = HolonomicFunction(Dx + 1, x) r = HolonomicFunction((x - 2) + (x**2 - 2) * Dx + (x**2 - x) * Dx**2, x) assert p + q == r p = HolonomicFunction(x * Dx + Dx**2 * (x**2 + 2), x) q = HolonomicFunction(Dx - 3, x) r = HolonomicFunction((-54 * x**2 - 126 * x - 150) + (-135 * x**3 - 252 * x**2 - 270 * x + 140) * Dx +\ (-27 * x**4 - 24 * x**2 + 14 * x - 150) * Dx**2 + \ (9 * x**4 + 15 * x**3 + 38 * x**2 + 30 * x +40) * Dx**3, x) assert p + q == r p = HolonomicFunction(Dx**5 - 1, x) q = HolonomicFunction(x**3 + Dx, x) r = HolonomicFunction((-x**18 + 45*x**14 - 525*x**10 + 1575*x**6 - x**3 - 630*x**2) + \ (-x**15 + 30*x**11 - 195*x**7 + 210*x**3 - 1)*Dx + (x**18 - 45*x**14 + 525*x**10 - \ 1575*x**6 + x**3 + 630*x**2)*Dx**5 + (x**15 - 30*x**11 + 195*x**7 - 210*x**3 + \ 1)*Dx**6, x) assert p + q == r p = x**2 + 3 * x + 8 q = x**3 - 7 * x + 5 p = p * Dx - p.diff() q = q * Dx - q.diff() r = HolonomicFunction(p, x) + HolonomicFunction(q, x) s = HolonomicFunction((6*x**2 + 18*x + 14) + (-4*x**3 - 18*x**2 - 62*x + 10)*Dx +\ (x**4 + 6*x**3 + 31*x**2 - 10*x - 71)*Dx**2, x) assert r == s
def test_pickling_polys_polyclasses(): from sympy.polys.polyclasses import DMP, DMF, ANP for c in (DMP, DMP([[ZZ(1)], [ZZ(2)], [ZZ(3)]], ZZ)): check(c) for c in (DMF, DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(3)]), ZZ)): check(c) for c in (ANP, ANP([QQ(1), QQ(2)], [QQ(1), QQ(2), QQ(3)], QQ)): check(c)
def test_integrate(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = expr_to_holonomic(sin(x)**2 / x, x0=1).integrate((x, 2, 3)) q = '0.166270406994788' assert sstr(p) == q p = expr_to_holonomic(sin(x)).integrate((x, 0, x)).to_expr() q = 1 - cos(x) assert p == q p = expr_to_holonomic(sin(x)).integrate((x, 0, 3)) q = 1 - cos(3) assert p == q p = expr_to_holonomic(sin(x) / x, x0=1).integrate((x, 1, 2)) q = '0.659329913368450' assert sstr(p) == q p = expr_to_holonomic(sin(x)**2 / x, x0=1).integrate((x, 1, 0)) q = '-0.423690480850035' assert sstr(p) == q p = expr_to_holonomic(sin(x) / x) assert p.integrate(x).to_expr() == Si(x) assert p.integrate((x, 0, 2)) == Si(2) p = expr_to_holonomic(sin(x)**2 / x) q = p.to_expr() assert p.integrate(x).to_expr() == q.integrate((x, 0, x)) assert p.integrate((x, 0, 1)) == q.integrate((x, 0, 1)) assert expr_to_holonomic(1 / x, x0=1).integrate(x).to_expr() == log(x) p = expr_to_holonomic((x + 1)**3 * exp(-x), x0=-1).integrate(x).to_expr() q = (-x**3 - 6 * x**2 - 15 * x + 6 * exp(x + 1) - 16) * exp(-x) assert p == q p = expr_to_holonomic(cos(x)**2 / x**2, y0={ -2: [1, 0, -1] }).integrate(x).to_expr() q = -Si(2 * x) - cos(x)**2 / x assert p == q p = expr_to_holonomic(sqrt(x**2 + x)).integrate(x).to_expr() q = (x**Rational(3, 2) * (2 * x**2 + 3 * x + 1) - x * sqrt(x + 1) * asinh(sqrt(x))) / (4 * x * sqrt(x + 1)) assert p == q p = expr_to_holonomic(sqrt(x**2 + 1)).integrate(x).to_expr() q = (sqrt(x**2 + 1)).integrate(x) assert (p - q).simplify() == 0 p = expr_to_holonomic(1 / x**2, y0={-2: [1, 0, 0]}) r = expr_to_holonomic(1 / x**2, lenics=3) assert p == r q = expr_to_holonomic(cos(x)**2) assert (r * q).integrate(x).to_expr() == -Si(2 * x) - cos(x)**2 / x
def is_int(c): r""" Test whether an argument is of an acceptable type to be used as an integer. Explanation =========== Returns ``True`` on any argument of type ``int`` or :ref:`ZZ`. See Also ======== is_rat """ # If gmpy2 is installed then ``ZZ.of_type()`` accepts only # ``mpz``, not ``int``, so we need another clause to ensure ``int`` is # accepted. return isinstance(c, int) or ZZ.of_type(c)
def test_series(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx**2 + 2 * x * Dx, x, 0, [0, 1]).series(n=10) q = x - x**3 / 3 + x**5 / 10 - x**7 / 42 + x**9 / 216 + O(x**10) assert p == q p = HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2) q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]) # cos(x) r = (p * q).series(n=10) # expansion of cos(x) * exp(x**2) s = 1 + x**2 / 2 + x**4 / 24 - 31 * x**6 / 720 - 179 * x**8 / 8064 + O(x** 10) assert r == s t = HolonomicFunction((1 + x) * Dx**2 + Dx, x, 0, [0, 1]) # log(1 + x) r = (p * t + q).series(n=10) s = 1 + x - x**2 + 4*x**3/3 - 17*x**4/24 + 31*x**5/30 - 481*x**6/720 +\ 71*x**7/105 - 20159*x**8/40320 + 379*x**9/840 + O(x**10) assert r == s p = HolonomicFunction((6+6*x-3*x**2) - (10*x-3*x**2-3*x**3)*Dx + \ (4-6*x**3+2*x**4)*Dx**2, x, 0, [0, 1]).series(n=7) q = x + x**3 / 6 - 3 * x**4 / 16 + x**5 / 20 - 23 * x**6 / 960 + O(x**7) assert p == q p = HolonomicFunction((6+6*x-3*x**2) - (10*x-3*x**2-3*x**3)*Dx + \ (4-6*x**3+2*x**4)*Dx**2, x, 0, [1, 0]).series(n=7) q = 1 - 3 * x**2 / 4 - x**3 / 4 - 5 * x**4 / 32 - 3 * x**5 / 40 - 17 * x**6 / 384 + O( x**7) assert p == q p = expr_to_holonomic(erf(x) + x).series(n=10) C_3 = symbols('C_3') q = (erf(x) + x).series(n=10) assert p.subs(C_3, -2 / (3 * sqrt(pi))) == q assert expr_to_holonomic( sqrt(x**3 + x)).series(n=10) == sqrt(x**3 + x).series(n=10) assert expr_to_holonomic((2 * x - 3 * x**2)**Rational( 1, 3)).series() == ((2 * x - 3 * x**2)**Rational(1, 3)).series() assert expr_to_holonomic(sqrt(x**2 - x)).series() == (sqrt(x**2 - x)).series() assert expr_to_holonomic(cos(x)**2 / x**2, y0={ -2: [1, 0, -1] }).series(n=10) == (cos(x)**2 / x**2).series(n=10) assert expr_to_holonomic(cos(x)**2 / x**2, x0=1).series( n=10).together() == (cos(x)**2 / x**2).series(n=10, x0=1).together() assert expr_to_holonomic(cos(x-1)**2/(x-1)**2, x0=1, y0={-2: [1, 0, -1]}).series(n=10) \ == (cos(x-1)**2/(x-1)**2).series(x0=1, n=10)
def test_diff(): x, y = symbols('x, y') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(x * Dx**2 + 1, x, 0, [0, 1]) assert p.diff().to_expr() == p.to_expr().diff().simplify() p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0]) assert p.diff(x, 2).to_expr() == p.to_expr() p = expr_to_holonomic(Si(x)) assert p.diff().to_expr() == sin(x) / x assert p.diff(y) == 0 C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3') q = Si(x) assert p.diff(x).to_expr() == q.diff() assert p.diff(x, 2).to_expr().subs(C_0, Rational(-1, 3)).cancel() == q.diff( x, 2).cancel() assert p.diff(x, 3).series().subs({ C_3: Rational(-1, 3), C_0: 0 }) == q.diff(x, 3).series()
def test_polymatrix_constructor(): M1 = PolyMatrix([[x, y]], ring=QQ[x,y]) assert M1.ring == QQ[x,y] assert M1.domain == QQ assert M1.gens == (x, y) assert M1.shape == (1, 2) assert M1.rows == 1 assert M1.cols == 2 assert len(M1) == 2 assert list(M1) == [Poly(x, (x, y), domain=QQ), Poly(y, (x, y), domain=QQ)] M2 = PolyMatrix([[x, y]], ring=QQ[x][y]) assert M2.ring == QQ[x][y] assert M2.domain == QQ[x] assert M2.gens == (y,) assert M2.shape == (1, 2) assert M2.rows == 1 assert M2.cols == 2 assert len(M2) == 2 assert list(M2) == [Poly(x, (y,), domain=QQ[x]), Poly(y, (y,), domain=QQ[x])] assert PolyMatrix([[x, y]], y) == PolyMatrix([[x, y]], ring=ZZ.frac_field(x)[y]) assert PolyMatrix([[x, y]], ring='ZZ[x,y]') == PolyMatrix([[x, y]], ring=ZZ[x,y]) assert PolyMatrix([[x, y]], (x, y)) == PolyMatrix([[x, y]], ring=QQ[x,y]) assert PolyMatrix([[x, y]], x, y) == PolyMatrix([[x, y]], ring=QQ[x,y]) assert PolyMatrix([x, y]) == PolyMatrix([[x], [y]], ring=QQ[x,y]) assert PolyMatrix(1, 2, [x, y]) == PolyMatrix([[x, y]], ring=QQ[x,y]) assert PolyMatrix(1, 2, lambda i,j: [x,y][j]) == PolyMatrix([[x, y]], ring=QQ[x,y]) assert PolyMatrix(0, 2, [], x, y).shape == (0, 2) assert PolyMatrix(2, 0, [], x, y).shape == (2, 0) assert PolyMatrix([[], []], x, y).shape == (2, 0) assert PolyMatrix(ring=QQ[x,y]) == PolyMatrix(0, 0, [], ring=QQ[x,y]) == PolyMatrix([], ring=QQ[x,y]) raises(TypeError, lambda: PolyMatrix()) raises(TypeError, lambda: PolyMatrix(1)) assert PolyMatrix([Poly(x), Poly(y)]) == PolyMatrix([[x], [y]], ring=ZZ[x,y]) # XXX: Maybe a bug in parallel_poly_from_expr (x lost from gens and domain): assert PolyMatrix([Poly(y, x), 1]) == PolyMatrix([[y], [1]], ring=QQ[y])
def is_rat(c): r""" Test whether an argument is of an acceptable type to be used as a rational number. Explanation =========== Returns ``True`` on any argument of type ``int``, :ref:`ZZ`, or :ref:`QQ`. See Also ======== is_int """ # ``c in QQ`` is too accepting (e.g. ``3.14 in QQ`` is ``True``), # ``QQ.of_type(c)`` is too demanding (e.g. ``QQ.of_type(3)`` is ``False``). # # Meanwhile, if gmpy2 is installed then ``ZZ.of_type()`` accepts only # ``mpz``, not ``int``, so we need another clause to ensure ``int`` is # accepted. return isinstance(c, int) or ZZ.of_type(c) or QQ.of_type(c)
def test_HolonomicFunction_multiplication(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx + x + x * Dx**2, x) q = HolonomicFunction(x * Dx + Dx * x + Dx**2, x) r = HolonomicFunction((8*x**6 + 4*x**4 + 6*x**2 + 3) + (24*x**5 - 4*x**3 + 24*x)*Dx + \ (8*x**6 + 20*x**4 + 12*x**2 + 2)*Dx**2 + (8*x**5 + 4*x**3 + 4*x)*Dx**3 + \ (2*x**4 + x**2)*Dx**4, x) assert p * q == r p = HolonomicFunction(Dx**2 + 1, x) q = HolonomicFunction(Dx - 1, x) r = HolonomicFunction((2) + (-2) * Dx + (1) * Dx**2, x) assert p * q == r p = HolonomicFunction(Dx**2 + 1 + x + Dx, x) q = HolonomicFunction((Dx * x - 1)**2, x) r = HolonomicFunction((4*x**7 + 11*x**6 + 16*x**5 + 4*x**4 - 6*x**3 - 7*x**2 - 8*x - 2) + \ (8*x**6 + 26*x**5 + 24*x**4 - 3*x**3 - 11*x**2 - 6*x - 2)*Dx + \ (8*x**6 + 18*x**5 + 15*x**4 - 3*x**3 - 6*x**2 - 6*x - 2)*Dx**2 + (8*x**5 + \ 10*x**4 + 6*x**3 - 2*x**2 - 4*x)*Dx**3 + (4*x**5 + 3*x**4 - x**2)*Dx**4, x) assert p * q == r p = HolonomicFunction(x * Dx**2 - 1, x) q = HolonomicFunction(Dx * x - x, x) r = HolonomicFunction((x - 3) + (-2 * x + 2) * Dx + (x) * Dx**2, x) assert p * q == r
def test_HolonomicFunction_composition(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx - 1, x).composition(x**2 + x) r = HolonomicFunction((-2 * x - 1) + Dx, x) assert p == r p = HolonomicFunction(Dx**2 + 1, x).composition(x**5 + x**2 + 1) r = HolonomicFunction((125*x**12 + 150*x**9 + 60*x**6 + 8*x**3) + (-20*x**3 - 2)*Dx + \ (5*x**4 + 2*x)*Dx**2, x) assert p == r p = HolonomicFunction(Dx**2 * x + x, x).composition(2 * x**3 + x**2 + 1) r = HolonomicFunction((216*x**9 + 324*x**8 + 180*x**7 + 152*x**6 + 112*x**5 + \ 36*x**4 + 4*x**3) + (24*x**4 + 16*x**3 + 3*x**2 - 6*x - 1)*Dx + (6*x**5 + 5*x**4 + \ x**3 + 3*x**2 + x)*Dx**2, x) assert p == r p = HolonomicFunction(Dx**2 + 1, x).composition(1 - x**2) r = HolonomicFunction((4 * x**3) - Dx + x * Dx**2, x) assert p == r p = HolonomicFunction(Dx**2 + 1, x).composition(x - 2 / (x**2 + 1)) r = HolonomicFunction((x**12 + 6*x**10 + 12*x**9 + 15*x**8 + 48*x**7 + 68*x**6 + \ 72*x**5 + 111*x**4 + 112*x**3 + 54*x**2 + 12*x + 1) + (12*x**8 + 32*x**6 + \ 24*x**4 - 4)*Dx + (x**12 + 6*x**10 + 4*x**9 + 15*x**8 + 16*x**7 + 20*x**6 + 24*x**5+ \ 15*x**4 + 16*x**3 + 6*x**2 + 4*x + 1)*Dx**2, x) assert p == r
class GaussianIntegerRing(GaussianDomain, Ring): r"""Ring of Gaussian integers ``ZZ_I`` The :ref:`ZZ_I` domain represents the `Gaussian integers`_ `\mathbb{Z}[i]` as a :py:class:`~.Domain` in the domain system (see :ref:`polys-domainsintro`). By default a :py:class:`~.Poly` created from an expression with coefficients that are combinations of integers and ``I`` (`\sqrt{-1}`) will have the domain :ref:`ZZ_I`. >>> from sympy import Poly, Symbol, I >>> x = Symbol('x') >>> p = Poly(x**2 + I) >>> p Poly(x**2 + I, x, domain='ZZ_I') >>> p.domain ZZ_I The :ref:`ZZ_I` domain can be used to factorise polynomials that are reducible over the Gaussian integers. >>> from sympy import factor >>> factor(x**2 + 1) x**2 + 1 >>> factor(x**2 + 1, domain='ZZ_I') (x - I)*(x + I) The corresponding `field of fractions`_ is the domain of the Gaussian rationals :ref:`QQ_I`. Conversely :ref:`ZZ_I` is the `ring of integers`_ of :ref:`QQ_I`. >>> from sympy import ZZ_I, QQ_I >>> ZZ_I.get_field() QQ_I >>> QQ_I.get_ring() ZZ_I When using the domain directly :ref:`ZZ_I` can be used as a constructor. >>> ZZ_I(3, 4) (3 + 4*I) >>> ZZ_I(5) (5 + 0*I) The domain elements of :ref:`ZZ_I` are instances of :py:class:`~.GaussianInteger` which support the rings operations ``+,-,*,**``. >>> z1 = ZZ_I(5, 1) >>> z2 = ZZ_I(2, 3) >>> z1 (5 + 1*I) >>> z2 (2 + 3*I) >>> z1 + z2 (7 + 4*I) >>> z1 * z2 (7 + 17*I) >>> z1 ** 2 (24 + 10*I) Both floor (``//``) and modulo (``%``) division work with :py:class:`~.GaussianInteger` (see the :py:meth:`~.Domain.div` method). >>> z3, z4 = ZZ_I(5), ZZ_I(1, 3) >>> z3 // z4 # floor division (1 + -1*I) >>> z3 % z4 # modulo division (remainder) (1 + -2*I) >>> (z3//z4)*z4 + z3%z4 == z3 True True division (``/``) in :ref:`ZZ_I` gives an element of :ref:`QQ_I`. The :py:meth:`~.Domain.exquo` method can be used to divide in :ref:`ZZ_I` when exact division is possible. >>> z1 / z2 (1 + -1*I) >>> ZZ_I.exquo(z1, z2) (1 + -1*I) >>> z3 / z4 (1/2 + -3/2*I) >>> ZZ_I.exquo(z3, z4) Traceback (most recent call last): ... ExactQuotientFailed: (1 + 3*I) does not divide (5 + 0*I) in ZZ_I The :py:meth:`~.Domain.gcd` method can be used to compute the `gcd`_ of any two elements. >>> ZZ_I.gcd(ZZ_I(10), ZZ_I(2)) (2 + 0*I) >>> ZZ_I.gcd(ZZ_I(5), ZZ_I(2, 1)) (2 + 1*I) .. _Gaussian integers: https://en.wikipedia.org/wiki/Gaussian_integer .. _gcd: https://en.wikipedia.org/wiki/Greatest_common_divisor """ dom = ZZ dtype = GaussianInteger zero = dtype(ZZ(0), ZZ(0)) one = dtype(ZZ(1), ZZ(0)) imag_unit = dtype(ZZ(0), ZZ(1)) units = (one, imag_unit, -one, -imag_unit) # powers of i rep = 'ZZ_I' is_GaussianRing = True is_ZZ_I = True def __init__(self): # override Domain.__init__ """For constructing ZZ_I.""" def get_ring(self): """Returns a ring associated with ``self``. """ return self def get_field(self): """Returns a field associated with ``self``. """ return QQ_I def normalize(self, d, *args): """Return first quadrant element associated with ``d``. Also multiply the other arguments by the same power of i. """ unit = self.canonical_unit(d) d *= unit args = tuple(a * unit for a in args) return (d, ) + args if args else d def gcd(self, a, b): """Greatest common divisor of a and b over ZZ_I.""" while b: a, b = b, a % b return self.normalize(a) def lcm(self, a, b): """Least common multiple of a and b over ZZ_I.""" return (a * b) // self.gcd(a, b) def from_GaussianIntegerRing(K1, a, K0): """Convert a ZZ_I element to ZZ_I.""" return a def from_GaussianRationalField(K1, a, K0): """Convert a QQ_I element to ZZ_I.""" return K1.new(ZZ.convert(a.x), ZZ.convert(a.y))
def test_trace(): a = [[ZZ(3), ZZ(7), ZZ(4)], [ZZ(2), ZZ(4), ZZ(5)], [ZZ(6), ZZ(2), ZZ(3)]] b = eye(2, ZZ) assert trace(a, ZZ) == ZZ(10) assert trace(b, ZZ) == ZZ(2)
def test_mulmatscaler(): a = eye(3, ZZ) b = [[ZZ(3), ZZ(7), ZZ(4)], [ZZ(2), ZZ(4), ZZ(5)], [ZZ(6), ZZ(2), ZZ(3)]] assert mulmatscaler(a, ZZ(4), ZZ) == [[ZZ(4), ZZ(0), ZZ(0)], [ZZ(0), ZZ(4), ZZ(0)], [ZZ(0), ZZ(0), ZZ(4)]] assert mulmatscaler(b, ZZ(1), ZZ) == [[ZZ(3), ZZ(7), ZZ(4)], [ZZ(2), ZZ(4), ZZ(5)], [ZZ(6), ZZ(2), ZZ(3)]]
def from_GaussianRationalField(K1, a, K0): """Convert a QQ_I element to ZZ_I.""" return K1.new(ZZ.convert(a.x), ZZ.convert(a.y))
def test_mulmatmat(): a = [[ZZ(3), ZZ(4)], [ZZ(5), ZZ(6)]] b = [[ZZ(1), ZZ(2)], [ZZ(7), ZZ(8)]] c = eye(2, ZZ) d = [[ZZ(6)], [ZZ(7)]] assert mulmatmat(a, b, ZZ) == [[ZZ(31), ZZ(38)], [ZZ(47), ZZ(58)]] assert mulmatmat(a, c, ZZ) == [[ZZ(3), ZZ(4)], [ZZ(5), ZZ(6)]] assert mulmatmat(b, d, ZZ) == [[ZZ(20)], [ZZ(98)]]
def test_sub(): a = [[ZZ(3), ZZ(7), ZZ(4)], [ZZ(2), ZZ(4), ZZ(5)], [ZZ(6), ZZ(2), ZZ(3)]] b = [[ZZ(5), ZZ(4), ZZ(9)], [ZZ(3), ZZ(7), ZZ(1)], [ZZ(12), ZZ(13), ZZ(14)]] c = [[ZZ(12)], [ZZ(17)], [ZZ(21)]] d = [[ZZ(3)], [ZZ(4)], [ZZ(5)]] e = [[ZZ(12), ZZ(78)], [ZZ(56), ZZ(79)]] f = [[ZZ.zero, ZZ.zero], [ZZ.zero, ZZ.zero]] assert sub(a, b, ZZ) == [[ZZ(-2), ZZ(3), ZZ(-5)], [ZZ(-1), ZZ(-3), ZZ(4)], [ZZ(-6), ZZ(-11), ZZ(-11)]] assert sub(c, d, ZZ) == [[ZZ(9)], [ZZ(13)], [ZZ(16)]] assert sub(e, f, ZZ) == e
def test_add(): a = [[ZZ(3), ZZ(7), ZZ(4)], [ZZ(2), ZZ(4), ZZ(5)], [ZZ(6), ZZ(2), ZZ(3)]] b = [[ZZ(5), ZZ(4), ZZ(9)], [ZZ(3), ZZ(7), ZZ(1)], [ZZ(12), ZZ(13), ZZ(14)]] c = [[ZZ(12)], [ZZ(17)], [ZZ(21)]] d = [[ZZ(3)], [ZZ(4)], [ZZ(5)]] e = [[ZZ(12), ZZ(78)], [ZZ(56), ZZ(79)]] f = [[ZZ.zero, ZZ.zero], [ZZ.zero, ZZ.zero]] assert add(a, b, ZZ) == [[ZZ(8), ZZ(11), ZZ(13)], [ZZ(5), ZZ(11), ZZ(6)], [ZZ(18), ZZ(15), ZZ(17)]] assert add(c, d, ZZ) == [[ZZ(15)], [ZZ(21)], [ZZ(26)]] assert add(e, f, ZZ) == e
def round_two(T, radicals=None): r""" Zassenhaus's "Round 2" algorithm. Explanation =========== Carry out Zassenhaus's "Round 2" algorithm on a monic irreducible polynomial *T* over :ref:`ZZ`. This computes an integral basis and the discriminant for the field $K = \mathbb{Q}[x]/(T(x))$. Ordinarily this function need not be called directly, as one can instead access the :py:meth:`~.AlgebraicField.maximal_order`, :py:meth:`~.AlgebraicField.integral_basis`, and :py:meth:`~.AlgebraicField.discriminant` methods of an :py:class:`~.AlgebraicField`. Examples ======== Working through an AlgebraicField: >>> from sympy import Poly, QQ >>> from sympy.abc import x >>> T = Poly(x ** 3 + x ** 2 - 2 * x + 8) >>> K = QQ.alg_field_from_poly(T, "theta") >>> print(K.maximal_order()) Submodule[[2, 0, 0], [0, 2, 0], [0, 1, 1]]/2 >>> print(K.discriminant()) -503 >>> print(K.integral_basis(fmt='sympy')) [1, theta, theta/2 + theta**2/2] Calling directly: >>> from sympy import Poly >>> from sympy.abc import x >>> from sympy.polys.numberfields.basis import round_two >>> T = Poly(x ** 3 + x ** 2 - 2 * x + 8) >>> print(round_two(T)) (Submodule[[2, 0, 0], [0, 2, 0], [0, 1, 1]]/2, -503) The nilradicals mod $p$ that are sometimes computed during the Round Two algorithm may be useful in further calculations. Pass a dictionary under `radicals` to receive these: >>> T = Poly(x**3 + 3*x**2 + 5) >>> rad = {} >>> ZK, dK = round_two(T, radicals=rad) >>> print(rad) {3: Submodule[[-1, 1, 0], [-1, 0, 1]]} Parameters ========== T : :py:class:`~.Poly` The irreducible monic polynomial over :ref:`ZZ` defining the number field. radicals : dict, optional This is a way for any $p$-radicals (if computed) to be returned by reference. If desired, pass an empty dictionary. If the algorithm reaches the point where it computes the nilradical mod $p$ of the ring of integers $Z_K$, then an $\mathbb{F}_p$-basis for this ideal will be stored in this dictionary under the key ``p``. This can be useful for other algorithms, such as prime decomposition. Returns ======= Pair ``(ZK, dK)``, where: ``ZK`` is a :py:class:`~sympy.polys.numberfields.modules.Submodule` representing the maximal order. ``dK`` is the discriminant of the field $K = \mathbb{Q}[x]/(T(x))$. See Also ======== .AlgebraicField.maximal_order .AlgebraicField.integral_basis .AlgebraicField.discriminant References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* """ if T.domain == QQ: try: T = Poly(T, domain=ZZ) except CoercionFailed: pass # Let the error be raised by the next clause. if (not T.is_univariate or not T.is_irreducible or not T.is_monic or not T.domain == ZZ): raise ValueError( 'Round 2 requires a monic irreducible univariate polynomial over ZZ.' ) n = T.degree() D = T.discriminant() D_modulus = ZZ.from_sympy(abs(D)) # D must be 0 or 1 mod 4 (see Cohen Sec 4.4), which ensures we can write # it in the form D = D_0 * F**2, where D_0 is 1 or a fundamental discriminant. _, F = extract_fundamental_discriminant(D) Ztheta = PowerBasis(T) H = Ztheta.whole_submodule() nilrad = None while F: # Next prime: p, e = F.popitem() U_bar, m = _apply_Dedekind_criterion(T, p) if m == 0: continue # For a given prime p, the first enlargement of the order spanned by # the current basis can be done in a simple way: U = Ztheta.element_from_poly(Poly(U_bar, domain=ZZ)) # TODO: # Theory says only first m columns of the U//p*H term below are needed. # Could be slightly more efficient to use only those. Maybe `Submodule` # class should support a slice operator? H = H.add(U // p * H, hnf_modulus=D_modulus) if e <= m: continue # A second, and possibly more, enlargements for p will be needed. # These enlargements require a more involved procedure. q = p while q < n: q *= p H1, nilrad = _second_enlargement(H, p, q) while H1 != H: H = H1 H1, nilrad = _second_enlargement(H, p, q) # Note: We do not store all nilradicals mod p, only the very last. This is # because, unless computed against the entire integral basis, it might not # be accurate. (In other words, if H was not already equal to ZK when we # passed it to `_second_enlargement`, then we can't trust the nilradical # so computed.) Example: if T(x) = x ** 3 + 15 * x ** 2 - 9 * x + 13, then # F is divisible by 2, 3, and 7, and the nilradical mod 2 as computed above # will not be accurate for the full, maximal order ZK. if nilrad is not None and isinstance(radicals, dict): radicals[p] = nilrad ZK = H # Pre-set expensive boolean properties which we already know to be true: ZK._starts_with_unity = True ZK._is_sq_maxrank_HNF = True dK = (D * ZK.matrix.det()**2) // ZK.denom**(2 * n) return ZK, dK
def test_transpose(): a = [[ZZ(3), ZZ(7), ZZ(4)], [ZZ(2), ZZ(4), ZZ(5)], [ZZ(6), ZZ(2), ZZ(3)]] b = eye(4, ZZ) assert transpose(a, ZZ) == ([[ZZ(3), ZZ(2), ZZ(6)], [ZZ(7), ZZ(4), ZZ(2)], [ZZ(4), ZZ(5), ZZ(3)]]) assert transpose(b, ZZ) == b