def test_dmp_primitive(): assert dmp_primitive([[]], 1, ZZ) == ([], [[]]) assert dmp_primitive([[1]], 1, ZZ) == ([1], [[1]]) f, g, F = [ZZ(3), ZZ(2), ZZ(1)], [ZZ(1)], [] for i in xrange(0, 5): g = dup_mul(g, f, ZZ) F.insert(0, g) assert dmp_primitive(F, 1, ZZ) == (f, [dup_exquo(c, f, ZZ) for c in F]) cont, f = dmp_primitive(f_4, 2, ZZ) assert dmp_one_p(cont, 1, ZZ) and f == f_4 cont, f = dmp_primitive(f_5, 2, ZZ) assert dmp_one_p(cont, 1, ZZ) and f == f_5 cont, f = dmp_primitive(f_6, 3, ZZ) assert dmp_one_p(cont, 2, ZZ) and f == f_6
def test_dmp_primitive(): assert dmp_primitive([[]], 1, ZZ) == ([], [[]]) assert dmp_primitive([[1]], 1, ZZ) == ([1], [[1]]) f, g, F = [ZZ(3),ZZ(2),ZZ(1)], [ZZ(1)], [] for i in xrange(0, 5): g = dup_mul(g, f, ZZ) F.insert(0, g) assert dmp_primitive(F, 1, ZZ) == (f, [ dup_exquo(c, f, ZZ) for c in F ]) cont, f = dmp_primitive(f_4, 2, ZZ) assert dmp_one_p(cont, 1, ZZ) and f == f_4 cont, f = dmp_primitive(f_5, 2, ZZ) assert dmp_one_p(cont, 1, ZZ) and f == f_5 cont, f = dmp_primitive(f_6, 3, ZZ) assert dmp_one_p(cont, 2, ZZ) and f == f_6
def dmp_zz_factor(f, u, K): """ Factor (non square-free) polynomials in `Z[X]`. Given a multivariate polynomial `f` in `Z[x]` computes its complete factorization `f_1, ..., f_n` into irreducibles over integers:: f = content(f) f_1**k_1 ... f_n**k_n The factorization is computed by reducing the input polynomial into a primitive square-free polynomial and factoring it using Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division is used to recover the multiplicities of factors. The result is returned as a tuple consisting of:: (content(f), [(f_1, k_1), ..., (f_n, k_n)) Consider polynomial `f = 2*(x**2 - y**2)`:: >>> from sympy.polys.factortools import dmp_zz_factor >>> from sympy.polys.domains import ZZ >>> dmp_zz_factor([[2], [], [-2, 0, 0]], 1, ZZ) (2, [([[1], [-1, 0]], 1), ([[1], [1, 0]], 1)]) In result we got the following factorization:: f = 2 (x - y) (x + y) References ========== 1. [Gathen99]_ """ if not u: return dup_zz_factor(f, K) if dmp_zero_p(f, u): return K.zero, [] cont, g = dmp_ground_primitive(f, u, K) if dmp_ground_LC(g, u, K) < 0: cont, g = -cont, dmp_neg(g, u, K) if all(d <= 0 for d in dmp_degree_list(g, u)): return cont, [] G, g = dmp_primitive(g, u, K) factors = [] if dmp_degree(g, u) > 0: g = dmp_sqf_part(g, u, K) H = dmp_zz_wang(g, u, K) for h in H: k = 0 while True: q, r = dmp_div(f, h, u, K) if dmp_zero_p(r, u): f, k = q, k + 1 else: break factors.append((h, k)) for g, k in dmp_zz_factor(G, u - 1, K)[1]: factors.insert(0, ([g], k)) return cont, _sort_factors(factors)
def dmp_zz_factor(f, u, K): """ Factor (non square-free) polynomials in `Z[X]`. Given a multivariate polynomial `f` in `Z[x]` computes its complete factorization `f_1, ..., f_n` into irreducibles over integers:: f = content(f) f_1**k_1 ... f_n**k_n The factorization is computed by reducing the input polynomial into a primitive square-free polynomial and factoring it using Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division is used to recover the multiplicities of factors. The result is returned as a tuple consisting of:: (content(f), [(f_1, k_1), ..., (f_n, k_n)) Consider polynomial `f = 2*(x**2 - y**2)`:: >>> from sympy.polys.factortools import dmp_zz_factor >>> from sympy.polys.domains import ZZ >>> dmp_zz_factor([[2], [], [-2, 0, 0]], 1, ZZ) (2, [([[1], [-1, 0]], 1), ([[1], [1, 0]], 1)]) In result we got the following factorization:: f = 2 (x - y) (x + y) **References** 1. [Gathen99]_ """ if not u: return dup_zz_factor(f, K) if dmp_zero_p(f, u): return K.zero, [] cont, g = dmp_ground_primitive(f, u, K) if dmp_ground_LC(g, u, K) < 0: cont, g = -cont, dmp_neg(g, u, K) if all([ d <= 0 for d in dmp_degree_list(g, u) ]): return cont, [] G, g = dmp_primitive(g, u, K) factors = [] if dmp_degree(g, u) > 0: g = dmp_sqf_part(g, u, K) H = dmp_zz_wang(g, u, K) for h in H: k = 0 while True: q, r = dmp_div(f, h, u, K) if dmp_zero_p(r, u): f, k = q, k+1 else: break factors.append((h, k)) for g, k in dmp_zz_factor(G, u-1, K)[1]: factors.insert(0, ([g], k)) return cont, _sort_factors(factors)
def dmp_zz_factor(f, u, K): """ Factor (non square-free) polynomials in `Z[X]`. Given a multivariate polynomial `f` in `Z[x]` computes its complete factorization `f_1, ..., f_n` into irreducibles over integers:: f = content(f) f_1**k_1 ... f_n**k_n The factorization is computed by reducing the input polynomial into a primitive square-free polynomial and factoring it using Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division is used to recover the multiplicities of factors. The result is returned as a tuple consisting of:: (content(f), [(f_1, k_1), ..., (f_n, k_n)) Consider polynomial `f = 2*(x**2 - y**2)`:: >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> R.dmp_zz_factor(2*x**2 - 2*y**2) (2, [(x - y, 1), (x + y, 1)]) In result we got the following factorization:: f = 2 (x - y) (x + y) References ========== 1. [Gathen99]_ """ if not u: return dup_zz_factor(f, K) if dmp_zero_p(f, u): return K.zero, [] cont, g = dmp_ground_primitive(f, u, K) if dmp_ground_LC(g, u, K) < 0: cont, g = -cont, dmp_neg(g, u, K) if all(d <= 0 for d in dmp_degree_list(g, u)): return cont, [] G, g = dmp_primitive(g, u, K) factors = [] if dmp_degree(g, u) > 0: g = dmp_sqf_part(g, u, K) H = dmp_zz_wang(g, u, K) factors = dmp_trial_division(f, H, u, K) for g, k in dmp_zz_factor(G, u - 1, K)[1]: factors.insert(0, ([g], k)) return cont, _sort_factors(factors)
def dmp_zz_factor(f, u, K): """ Factor (non square-free) polynomials in `Z[X]`. Given a multivariate polynomial `f` in `Z[x]` computes its complete factorization `f_1, ..., f_n` into irreducibles over integers:: f = content(f) f_1**k_1 ... f_n**k_n The factorization is computed by reducing the input polynomial into a primitive square-free polynomial and factoring it using Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division is used to recover the multiplicities of factors. The result is returned as a tuple consisting of:: (content(f), [(f_1, k_1), ..., (f_n, k_n)) Consider polynomial `f = 2*(x**2 - y**2)`:: >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> R.dmp_zz_factor(2*x**2 - 2*y**2) (2, [(x - y, 1), (x + y, 1)]) In result we got the following factorization:: f = 2 (x - y) (x + y) References ========== .. [1] [Gathen99]_ """ if not u: return dup_zz_factor(f, K) if dmp_zero_p(f, u): return K.zero, [] cont, g = dmp_ground_primitive(f, u, K) if dmp_ground_LC(g, u, K) < 0: cont, g = -cont, dmp_neg(g, u, K) if all(d <= 0 for d in dmp_degree_list(g, u)): return cont, [] G, g = dmp_primitive(g, u, K) factors = [] if dmp_degree(g, u) > 0: g = dmp_sqf_part(g, u, K) H = dmp_zz_wang(g, u, K) factors = dmp_trial_division(f, H, u, K) for g, k in dmp_zz_factor(G, u - 1, K)[1]: factors.insert(0, ([g], k)) return cont, _sort_factors(factors)