def test_polymatrix_manipulations(): M1 = PolyMatrix([[1, 2], [3, 4]], x) assert M1.transpose() == PolyMatrix([[1, 3], [2, 4]], x) M2 = PolyMatrix([[5, 6], [7, 8]], x) assert M1.row_join(M2) == PolyMatrix([[1, 2, 5, 6], [3, 4, 7, 8]], x) assert M1.col_join(M2) == PolyMatrix([[1, 2], [3, 4], [5, 6], [7, 8]], x) assert M1.applyfunc(lambda e: 2 * e) == PolyMatrix([[2, 4], [6, 8]], x)
def prde_no_cancel_b_small(b, Q, n, DE): """ Parametric Poly Risch Differential Equation - No cancellation: deg(b) small enough. Given a derivation D on k[t], n in ZZ, and b, q1, ..., qm in k[t] with deg(b) < deg(D) - 1 and either D == d/dt or deg(D) >= 2, returns h1, ..., hr in k[t] and a matrix A with coefficients in Const(k) such that if c1, ..., cm in Const(k) and q in k[t] satisfy deg(q) <= n and Dq + b*q == Sum(ci*qi, (i, 1, m)) then q = Sum(dj*hj, (j, 1, r)) where d1, ..., dr in Const(k) and A*Matrix([[c1, ..., cm, d1, ..., dr]]).T == 0. """ m = len(Q) H = [Poly(0, DE.t)]*m for N in range(n, 0, -1): # [n, ..., 1] for i in range(m): si = Q[i].nth(N + DE.d.degree(DE.t) - 1)/(N*DE.d.LC()) sitn = Poly(si*DE.t**N, DE.t) H[i] = H[i] + sitn Q[i] = Q[i] - derivation(sitn, DE) - b*sitn if b.degree(DE.t) > 0: for i in range(m): si = Poly(Q[i].nth(b.degree(DE.t))/b.LC(), DE.t) H[i] = H[i] + si Q[i] = Q[i] - derivation(si, DE) - b*si if all(qi.is_zero for qi in Q): dc = -1 M = Matrix() else: dc = max([qi.degree(DE.t) for qi in Q]) M = Matrix(dc + 1, m, lambda i, j: Q[j].nth(i)) A, u = constant_system(M, zeros(dc + 1, 1), DE) c = eye(m) A = A.row_join(zeros(A.rows, m)).col_join(c.row_join(-c)) return (H, A) # else: b is in k, deg(qi) < deg(Dt) t = DE.t if DE.case != 'base': with DecrementLevel(DE): t0 = DE.t # k = k0(t0) ba, bd = frac_in(b, t0, field=True) Q0 = [frac_in(qi.TC(), t0, field=True) for qi in Q] f, B = param_rischDE(ba, bd, Q0, DE) # f = [f1, ..., fr] in k^r and B is a matrix with # m + r columns and entries in Const(k) = Const(k0) # such that Dy0 + b*y0 = Sum(ci*qi, (i, 1, m)) has # a solution y0 in k with c1, ..., cm in Const(k) # if and only y0 = Sum(dj*fj, (j, 1, r)) where # d1, ..., dr ar in Const(k) and # B*Matrix([c1, ..., cm, d1, ..., dr]) == 0. # Transform fractions (fa, fd) in f into constant # polynomials fa/fd in k[t]. # (Is there a better way?) f = [Poly(fa.as_expr()/fd.as_expr(), t, field=True) for fa, fd in f] else: # Base case. Dy == 0 for all y in k and b == 0. # Dy + b*y = Sum(ci*qi) is solvable if and only if # Sum(ci*qi) == 0 in which case the solutions are # y = d1*f1 for f1 = 1 and any d1 in Const(k) = k. f = [Poly(1, t, field=True)] # r = 1 B = Matrix([[qi.TC() for qi in Q] + [S(0)]]) # The condition for solvability is # B*Matrix([c1, ..., cm, d1]) == 0 # There are no constraints on d1. # Coefficients of t^j (j > 0) in Sum(ci*qi) must be zero. d = max([qi.degree(DE.t) for qi in Q]) if d > 0: M = Matrix(d, m, lambda i, j: Q[j].nth(i + 1)) A, _ = constant_system(M, zeros(d, 1), DE) else: # No constraints on the hj. A = Matrix(0, m, []) # Solutions of the original equation are # y = Sum(dj*fj, (j, 1, r) + Sum(ei*hi, (i, 1, m)), # where ei == ci (i = 1, ..., m), when # A*Matrix([c1, ..., cm]) == 0 and # B*Matrix([c1, ..., cm, d1, ..., dr]) == 0 # Build combined constraint matrix with m + r + m columns. r = len(f) I = eye(m) A = A.row_join(zeros(A.rows, r + m)) B = B.row_join(zeros(B.rows, m)) C = I.row_join(zeros(m, r)).row_join(-I) return f + H, A.col_join(B).col_join(C)