def _futrig(e, **kwargs): """Helper for futrig.""" from sympy.simplify.fu import ( TR1, TR2, TR3, TR2i, TR10, L, TR10i, TR8, TR6, TR15, TR16, TR111, TR5, TRmorrie, TR11, TR14, TR22, TR12) from sympy.core.compatibility import _nodes if not e.has(TrigonometricFunction): return e if e.is_Mul: coeff, e = e.as_independent(TrigonometricFunction) else: coeff = S.One Lops = lambda x: (L(x), x.count_ops(), _nodes(x), len(x.args), x.is_Add) trigs = lambda x: x.has(TrigonometricFunction) tree = [identity, ( TR3, # canonical angles TR1, # sec-csc -> cos-sin TR12, # expand tan of sum lambda x: _eapply(factor, x, trigs), TR2, # tan-cot -> sin-cos [identity, lambda x: _eapply(_mexpand, x, trigs)], TR2i, # sin-cos ratio -> tan lambda x: _eapply(lambda i: factor(i.normal()), x, trigs), TR14, # factored identities TR5, # sin-pow -> cos_pow TR10, # sin-cos of sums -> sin-cos prod TR11, TR6, # reduce double angles and rewrite cos pows lambda x: _eapply(factor, x, trigs), TR14, # factored powers of identities [identity, lambda x: _eapply(_mexpand, x, trigs)], TRmorrie, TR10i, # sin-cos products > sin-cos of sums [identity, TR8], # sin-cos products -> sin-cos of sums [identity, lambda x: TR2i(TR2(x))], # tan -> sin-cos -> tan [ lambda x: _eapply(expand_mul, TR5(x), trigs), lambda x: _eapply( expand_mul, TR15(x), trigs)], # pos/neg powers of sin [ lambda x: _eapply(expand_mul, TR6(x), trigs), lambda x: _eapply( expand_mul, TR16(x), trigs)], # pos/neg powers of cos TR111, # tan, sin, cos to neg power -> cot, csc, sec [identity, TR2i], # sin-cos ratio to tan [identity, lambda x: _eapply( expand_mul, TR22(x), trigs)], # tan-cot to sec-csc TR1, TR2, TR2i, [identity, lambda x: _eapply( factor_terms, TR12(x), trigs)], # expand tan of sum )] e = greedy(tree, objective=Lops)(e) return coeff*e
def test_L(): assert L(cos(x) + sin(x)) == 2