def test_MultivariateEwens(): n, theta, i = symbols('n theta i', positive=True) # tests for integer dimensions theta_f = symbols('t_f', negative=True) a = symbols('a_1:4', positive=True, integer=True) ed = MultivariateEwens('E', 3, theta) assert density(ed)(a[0], a[1], a[2]) == Piecewise( (6 * 2**(-a[1]) * 3**(-a[2]) * theta**a[0] * theta**a[1] * theta**a[2] / (theta * (theta + 1) * (theta + 2) * factorial(a[0]) * factorial(a[1]) * factorial(a[2])), Eq(a[0] + 2 * a[1] + 3 * a[2], 3)), (0, True)) assert marginal_distribution(ed, ed[1])(a[1]) == Piecewise( (6 * 2**(-a[1]) * theta**a[1] / ((theta + 1) * (theta + 2) * factorial(a[1])), Eq(2 * a[1] + 1, 3)), (0, True)) raises(ValueError, lambda: MultivariateEwens('e1', 5, theta_f)) assert ed.pspace.distribution.set == ProductSet(Range(0, 4, 1), Range(0, 2, 1), Range(0, 2, 1)) # tests for symbolic dimensions eds = MultivariateEwens('E', n, theta) a = IndexedBase('a') j, k = symbols('j, k') den = Piecewise((factorial(n) * Product(theta**a[j] * (j + 1)**(-a[j]) / factorial(a[j]), (j, 0, n - 1)) / RisingFactorial(theta, n), Eq(n, Sum((k + 1) * a[k], (k, 0, n - 1)))), (0, True)) assert density(eds)(a).dummy_eq(den)
def test_MultivariateEwens(): from sympy.stats.joint_rv_types import MultivariateEwens n, theta = symbols('n theta', positive=True) theta_f = symbols('t_f', negative=True) a = symbols('a_1:4', positive = True, integer = True) ed = MultivariateEwens('E', 3, theta) assert density(ed)(a[0], a[1], a[2]) == Piecewise((6*2**(-a[1])*3**(-a[2])* theta**a[0]*theta**a[1]*theta**a[2]/ (theta*(theta + 1)*(theta + 2)* factorial(a[0])*factorial(a[1])* factorial(a[2])), Eq(a[0] + 2*a[1] + 3*a[2], 3)), (0, True)) assert marginal_distribution(ed, ed[1])(a[1]) == Piecewise((6*2**(-a[1])* theta**a[1]/((theta + 1)* (theta + 2)*factorial(a[1])), Eq(2*a[1] + 1, 3)), (0, True)) raises(ValueError, lambda: MultivariateEwens('e1', 5, theta_f)) raises(ValueError, lambda: MultivariateEwens('e1', n, theta))
def test_MultivariateEwens(): from sympy.stats.joint_rv_types import MultivariateEwens n, theta, i = symbols("n theta i", positive=True) # tests for integer dimensions theta_f = symbols("t_f", negative=True) a = symbols("a_1:4", positive=True, integer=True) ed = MultivariateEwens("E", 3, theta) assert density(ed)(a[0], a[1], a[2]) == Piecewise( ( 6 * 2**(-a[1]) * 3**(-a[2]) * theta**a[0] * theta**a[1] * theta**a[2] / (theta * (theta + 1) * (theta + 2) * factorial(a[0]) * factorial(a[1]) * factorial(a[2])), Eq(a[0] + 2 * a[1] + 3 * a[2], 3), ), (0, True), ) assert marginal_distribution(ed, ed[1])(a[1]) == Piecewise( ( 6 * 2**(-a[1]) * theta**a[1] / ((theta + 1) * (theta + 2) * factorial(a[1])), Eq(2 * a[1] + 1, 3), ), (0, True), ) raises(ValueError, lambda: MultivariateEwens("e1", 5, theta_f)) # tests for symbolic dimensions eds = MultivariateEwens("E", n, theta) a = IndexedBase("a") j, k = symbols("j, k") den = Piecewise( ( factorial(n) * Product(theta**a[j] * (j + 1)**(-a[j]) / factorial(a[j]), (j, 0, n - 1)) / RisingFactorial(theta, n), Eq(n, Sum((k + 1) * a[k], (k, 0, n - 1))), ), (0, True), ) assert density(eds)(a).dummy_eq(den)